• perth West australia
  • 61 0403177183
  • glknox11@live.com

Available Posts for hydrogenfuelsystems

Recent Available Posts for hydrogenfuelsystems to read are listed below

Listed below are a list of OLD POSTS That are held in achieve and available on request to glknox11@live.com

  • 1500 watt commercial  Power supply
  •  A Digital EFIE operation and How it works to adjust the fuel map to run hydrogen on engines
  •  Annual Cost Savings Fuel cost reduction when hydrogen is used to supplement diesel for a single ship
  •  Battery operation principles used to power hydrogen fuel systems
  •  Be careful when wiring a system
  •  Better Performance of Vehicles Using HHO Gas
  •  Calculation of maximum Hydrogen output
  •  Can Hydrogen Injection save the diesel engine technology and save fuel while increasing power output
  •  Client Questions and Answers regarding using Hydrogen Fuel Systems for cars, trucks generators, pumps
  •  Costly inefficient PWM Power supply running hydrogen Fuel systems
  •  Design of a MOSFET as a Switch to control the current flow in a Hydrogen generator circuit
  •  Digital MAP/MAF ENHANCER FOR MAP/MAF SENSORS
  •  Dihydrogen Monoxide FAQ
  •  EFFECT OF HHO GAS AS FUEL ADDITIVE ON THE EXHAUST EMISSIONS OF INTERNAL COMBUSTION ENGINE
  •  Effect of HHO gas on combustion emissions in gasoline engines
  •  Effect of HHO on Emissions- updated jan 8 2020
  •  Effect of hydrogen and gasoline fuel blend on the performance of SI engine
  •  Electrolysis Plate Treatment with Phosphoric acid to stop Frothing
  •  Electronic fuel enhancer needs time to activate
  •  Engine Air Temperature Sensor
  •  Failure Neutral plate systems to produce hydrogen gas
  •  Fault Finding Procedures for Hydrogen Generator Systems
  •  Finkel’s national hydrogen strategy gets green light, but could be lifeline for coal
  •  Fuel saver – frequency multimeter – Tuning Gen 10 Hydrogen fuel system for maximum savings and increased Power
  •  Fuel saver – Trucking Power supply Gen 20 to avoid bad connections
  •  Fuel saver -Hydrogen system- Importance of secure strong Electrical Terminals and connections
  •  Fuel Saver -Secret report – Faults with Power supply relays —- Power supplies, Crimped  Connectors ,  Relay Solenoids  and dry joints
  •  Fuel saver system – gasoline, petrol, diesel, LPG
  •  FUEL SAVER Testimonial/ Reference report on hydrogen system from Gail Brennan Mid North Coast NSW
  •  Fuel Saving Alternative Power supply connection trucking
  •  Fuel Saving Hydrogen Generator – updated January 8 2020
  •  Fuel savings – Fuel Map and Hydrogen on demand systems for engines
  •  Further developments in regulated power-supplies
  •  Further updates on using generation 15 system on the F250 truck
  •  Future of Hydrogen as a global Fuel Source
  •  Ground-Breaking Power supplies Massively Increase Hydrogen gas output
  •  High Current DC switches for use on Hydrogen generator systems
  •  High Power Regulated Power supply for hydrogen systems
  •  How a Hydrogen-Boosted Gasoline Engine Works
  •  How Does hydrogen hho, fuel , power, thermodynamics, efficiency, Oxygen increase fuel economy in an engine
  •  HOW IT WORKS- HYdrogen on demand systems
  •  How to avoid Poor terminal connections fault in Hydrogen Generator systems – June 2017
  •  Hydrogen and India
  •  Hydrogen buildup in “on demand” generators
  •  Hydrogen fuel system increases range of vehicle
  •  Hydrogen fuel system Power supply update
  •  Hydrogen Fuel Systems New Agents wanted – excellent commissions
  •  Hydrogen fuel systems on a 2017 VW golf 1.8 Litre
  •  Hydrogen fuel systems video
  •  Hydrogen Gains verification from the ” Toman Institute” UK
  •  Hydrogen Generator System Battery condition requirements
  •  Hydrogen Generator systems for heavy duty trucking/mining
  •  Hydrogen in internal combustion engines- NASA investigation
  •  Hydrogen injection saves diesel engines – Popular Mechanics january 2019
  •  Hydrogen systems for Diesel Engines University Research
  •  Hydrogen Test results for 3.6 litre V6 Commodore wagon used over A 4 week period driven in Perth City, West Australia
  •  Improved Mosfet switching circuit for powering Hydrogen fuel system
  •  Improved power supplies
  •  increase engine fuel economy Another Happy client
  •  Indian business and Hydrogen Generator systems
  •  Is hydrogen the next clean coal
  •  Latest fuel savings oct 8 2019
  •  Magnetism An unexpected push for the hydrogen economy -jan 8 2020
  •  Magnets that double efficiency of water splitting could help usher in a great hydrogen economy
  •  MAP Sensor, MAF sensor , and Controlling Fuel usage – Important
  •  Mass Airflow MAF Sensors
  •  Mosfet as a Hydrogen Fuel System Switch
  •  MOSFET current control circuit for a Hydrogen generator system 1.0
  •  MOSFET current controlled circuits for power supplies
  •  Mosfet switch Hydrogen Fuel Systems
  •  New Agents wanted… Excellent Commisions paid
  •  New Combination High-Power supply matched to new Hydrogen generator cells
  •  New Hydrogen systems installed Coogee chemicals heavy haulage trucks
  •  New power Supply/electrolysis cell combination
  •  Operational temperature hydrogen fuel system – commonly known as HHO systems
  •  Oxygen from Hydrogen generation process
  •  Potassium Hydroxide electrolyte – handling of powerful chemicals
  •  Proto-typing designs
  •  PWM power supply Explained
  •  Regulated power supplies for hydrogen generator systems
  •  Regulated power supply
  •  Renewable energy supply and carbon capture: capturing all the carbon dioxide at zero cost
  •  Renewable energy supply and carbon capture: capturing all the carbon dioxide at zero cost Pre-review version
  •  Renewable Hydrogen Strategy launches by Scott Davis 1st August, 2019
  •  Review and evaluation of hydrogen production options for better environment
  •  Servicing HHO System for use on cars, trucks generators and boats/ shipping
  •  Setting up a Hydrogen fuel system on your Vehicle
  •  Televised interview with WTV (ABC), Perth, November 2nd 2018
  •  Testimonials Hydrogen Generator system
  •  The “Neutral Plate” fairy tale
  •  The engine coolant temperature Sensors
  •  The Future of the Hydrogen economy
  •  Turning CO2 into Fuel Using Hydrogen generated by HFS innovative technology
  •  Twin Gen 20 Hydrogen booster system for use on cars, trucks, generators,boats and shipping
  •  Using Hydrogen fuel systems on Trawlers and work vessels – page 11 AMSA
  •  voltage regulator power supply for hydrogen fuel systems
  •  What is Hydrogen
  •  Who was/is the most badass scientist?
  •  Wideband O2 Sensors and Air/Fuel (A/F) Sensors
  •  Wideband Oxygen Sensors and Air/Fuel (A/F) Sensors

 youtube videos by hydrogenfuelsystems pty ltd

Corona Virus tragedy – drop in oil price and Hydrogen economy

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen

drop in oil price and Hydrogen. April 22 2020 today , and no reported cases of COVID19 in Perth for the past 4 days. Social Distancing is working.

The recent Covid 19 crisis has had a significant effect on global pollution from reduced operation of Internal combustion engines. It has also affected the Hydrogen economy due to the sudden drop in the price of a barrel of oil the the point where is is now a negative value. THis has had a major impact on the promotion of hydrogen as a fuel .

drop in oil price and Hydrogen. Sales of hydrogen fuel systems has dropped significantly. Fortunately the excellent marketing of these systems before 2020 , means we are financially in a good condition . It has given us more time to look at ways of increasing the output and efficiency of the hydrogen generator systems as well as looking deeper into developing improved Electronic Fuel enhancer modules for diesel and petrol / gasoline fueled vehicles

We have further updated the power supply units so as to reduce wasted electrical energy ( as heat) and increase the gas production of these systems.

We have also developed a new electrolyte solution and dynamic pumping system that further increases the gas production output for a low current input.

The Power supplies use a patented schematic arrangement that is easily incorporated into old and new hydrogen systems to increase the gas output. Unfortunately at present we will not be showing photos of the electronic components until the patent is fully approved. The Pumping system we are using is a high power magnetic rotor pump that has high efficiency as well as having now rotor seals that leak and fail with age. With the new pulsating power supply system powering the pump and cells there is no wasted electrical energy making the solution heat up. This protects the magnetic impeller pump as Heat is the greatest problem with any magnetic assembly,

More to come on the next report

Gen 20 Hydrogen systems with 1500 watt power supplies in diecast aluminium boxes ready for mounting boxes
Gen 20 Hydrogen systems with 1500 watt power supplies

A Review on Combined Effect of HHO Gas and Compression Ratio on the Performance and Emission Characteristics of Diesel Engine

hydrog2
0 comments
hydrogen fuel systems for cars

HHO Gas and Compression Ratio

HHO and Compression Ratio Performance. The increasing industrialization of the world has led the demand of petroleum based fuels. Fossil fuels are obtained from limited reserves. Nowadays, more researchers focus on protecting the environment. So, use the hydrogen gas with diesel fuel in CI engine. The oxygen enriched hydrogen-HHO gas was produced by the process of water electrolysis.

Hydroxy gas was produced by the electrolysis process of different electrolytes (KOH, NaOH, and NaCl) with various electrode designs in a leak proof Plexiglas reactor (hydrogen generator). This review paper presents the concern with the effectiveness of oxygen enriched hydrogen-HHO gas addition on performance and combustion characteristics of a CI engine with variable compression ratio.

The effect will be shown on the CI engine of the brake thermal efficiency, carbon monoxide, un-burn hydrocarbon, and carbon dioxide and NOx emission with the use of HHO and a variable compression ratio.

The increasing demand for petroleum fuel associated with limited non-renewable stored quantities has resulted in a huge increase in crude oil prices. In the last few years, ordinary people experienced this by paying more at the pumps. Consequently, we have seen a shift toward automobiles that consume less fuel.

This has encouraged researchers to seek an alternative fuel that can be used in engines without the need for a dramatic change in the vehicle design. It has been shown that using pressurized hydrogen gas as a fuel in internal combustion engines (IC engines)has many advantages such as more engine power and lower pollutant concentrations in exhaust gases

The use of HHO gas in conventional engines result in a reduction in emission of unburned hydrocarbons, carbon monoxide and particulate. Also, preheating of the air improves the thermal efficiency and reduces the vibration of the engine.

Lean mixture ratio combustion in IC engine which has the potential of producing low emission and higher thermal efficiency. Due to this combustion process was done in an efficient manner and the hydrogen was four times higher effective compare to ordinary fuels. And also leads to increase in efficiency and torque and horsepower of the engine, increase in the performance of the engine. As the load increases brake power increases.

Lean mixture ratio combustion

The brake power developed by the engine operated on HHO gas was more as compared with pure diesel. The Mechanical efficiency of the engine increase, for engine operated with HHO gas was more as compared whit pure diesel. Brake thermal efficiency, indicated thermal efficiency of engine increase, for engine operated with HHO gas was more as compared with pure diesel.

Total fuel consumption of the engine increase, for engine operated with HHO gas were more as compared with pure diesel. Emissions like that carbon monoxide, hydrocarbon, carbon dioxide, The NOx were greatly reduced for the engine operated with HHO gas compared to pure diesel engine.

EFFECT OF HHO GAS AS FUEL ADDITIVE ON THE EXHAUST EMISSIONS OF INTERNAL COMBUSTION ENGINE

hydrog2
0 comments
hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks

HHO GAS AS FUEL ADDITIVE

Introduction

Reducing the emission pollution associated with oil combustion is gaining an increasing interest worldwide. Recently, Brown’s gas (HHO gas) has been introduced as an alternative clean source of energy.

A system to generate HHO gas has been built and integrated with Honda G 200 (197 cc single cylinder engine). The results show that a mixture of HHO, air, and gasoline cause a reduction in the concentration of emission pollutant constituents and an enhancement in engine efficiency. The emission tests have been done with varying the engine speed. The results show that nitrogen monoxide (NO) and nitrogen oxides (NOX) have been reduced to about 50% when a mixture of HHO, air, and fuel was used. Moreover, the carbon monoxide concentration has been reduced to about 20%. Also a reduction in fuel consumption has been noticed and it ranges between 20% and 30%.

 HHO GAS AS FUEL ADDITIVE

Effect of HHO gas on combustion emissions in gasoline enginesSa’ed A. Musmar1, Ammar A. Al-RousanDepartment of Mechanical Engineering, Faculty of Engineering, Mutah University, Mutah, Al-Karak 61710, Jordana r t i c l e i n f o Article history:Received 16 February 2011Received in revised form 11 May 2011Accepted 17 May 2011Available online 1 June 2011

Keywords:Auto emissionsBrown’s gas (HHO)Fuel cell (FC)Nitrogen monoxide (NO)Nitrogen oxides (NO X )

Reducing the emission pollution associated with oil combustion is gaining an increasing interest world-wide. Recently, Brown’s gas (HHO gas) has been introduced as an alternative clean source of energy. A system to generate HHO gas has been built and integrated with Honda G 200 (197 cc single cylinder engine). The results show that a mixture of HHO, air, and gasoline cause a reduction in the concentration of emission pollutant constituents and an enhancement in engine efficiency. The emission tests have been done with varying the engine speed. The results show that nitrogen monoxide (NO) and nitrogen oxides (NO X ) have been reduced to about 50% when a mixture of HHO, air, and fuel was used. Moreover,the carbon monoxide concentration has been reduced to about 20%. Also a reduction in fuel consumption has been noticed and it ranges between 20% and 30%. 2011

Elsevier Ltd. All rights reserved.

1. Introduction

Global warming is considered one of the major problems the scientific community has to face. Many theories refer to the in-crease of exhaust gases concentration in the atmosphere as oneof the major causes of the global warming [1]. Industrial plantsand automobiles are the major source of the exhaust gases. 

For more information click here

Effect of HHO gas on combustion emissions in gasoline engines

hydrog2
0 comments
hydrogen fuel systems for cars

HHO gas on combustion emissions

Reducing the emission pollution associated with oil combustion is gaining an increasing interest worldwide. Recently, Brown’s gas (HHO gas) has been introduced as an alternative clean source of energy. A system to generate HHO gas has been built and integrated with Honda G 200 (197 cc single cylinder engine). The results show that a mixture of HHO, air, and gasoline cause a reduction in the concentration of emission pollutant constituents and an enhancement in engine efficiency. The emission tests have been done with varying the engine speed. The results show that nitrogen monoxide (NO) and nitrogen oxides (NOX) have been reduced to about 50% when a mixture of HHO, air, and fuel was used. Moreover, the carbon monoxide concentration has been reduced to about 20%. Also a reduction in fuel consumption has been noticed and it ranges between 20% and 30%.

HHO gas on combustion emissions

Global warming is considered one of the major problems the scientific community has to face. Many theories refer to the in-crease of exhaust gases concentration in the atmosphere as one of the major causes of the global warming [1]. Industrial plants and automobiles are the major source of the exhaust gases. Since they utilize the power associated with oil combustion as energy source. Emissions are simply the exhaust or leftovers of combustion coming out of an engine. An emissions test is normally done with a probe placed into the exhaust stream. Every road going vehicle has certain clean requirements that it is required to meet

 Conclusion

Experimental tests to investigate the effect of HHO gas on the emission parameters of a Honda G 200 engine have been carriedout. HHO gas has been generated by an electrolysis process in a Plexiglas box (fuel cell). The generated gas is mixed with a freshair just before entering the carburettor. The exhaust is sampledbyagasanalyserandtheexhaustconstituentshavebeenidentifiedand their concentrations have been evaluated. The following con-clusions can be drawn.1. HHO cell may be integrated easily with existing engines systems.2. The combustion efficiency has been enhanced when HHO gashas been introduced to the air/fuel mixture, consequently reducing fuel consumption.3. The concentration of nitrogen oxide has been reduced toal most 50% on average when HHO is introduced to the system.

4. When HHO is introduced to the system, the average concentra-tion of carbon monoxide has been reduced to almost 20% of the case where air/fuel mixture was used (no HHO).

5. The NO X  average concentration has been reduced to about 54%of the case where HHO was not introduced

6. H C concentration is highly affected by the engine speed and the presence of HHO gas

Better Performance of Vehicles Using HHO Gas

hydrog2
0 comments
hydrogen fuel systems for cars

Vehicles Using HHO Gas. Facing with the ever increasing cost of conventional fossil fuels, worldwide researches are working overtime to cost effectively improve internal combustion engine (ICE) fuel economy and emission characteristics. In recent years, many researchers have focused on the study of alternative fuels which benefit enhancing the engine economic and emissions characteristics. The main pollutants from the conventional hydrocarbon fuels are unburned/partially burned hydrocarbon (UBHC), CO, oxides of nitrogen (NOx), smoke and particulate matter. It is very important to reduce exhaust emissions and to improve thermal efficiency.In this project, hydroxy gas (HHO) was produced by the electrolysis process of an electrolyte (KOH(aq)) with stainless steel electrodes in a leak proof plexi glass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a single cylinder, spark ignition (SI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions, engine performance characteristics and specific fuel consumption are investigated

Vehicles Using HHO Gas

Enhanced Engine Life

Water has several soothing effects on various enginecomponents. Engine components like rings, bearings andpiston show higher efficiency when in contact with water.This is because, water being a solvent, takes additionalheat away from these components thereby enhancing theirlife. Usage of water also removes the carbon deposits,which lower the combustion efficiency of the engine.

 Noiseless Engine Operation

Engine noise is directly proportional to engine temperature.Hence, as temperature increases, engine noise increases aswell. When water is used along with the fuel, it acts as acoolant, thereby controlling the operating temperature andhence the noise level of the engine. This also leads tosmoother operation of the engine and effortless gearshifts. 

Increase in Mileage

Due to improved engine performance and enhanced quality of combustion cycle, your vehicle will experience an improvement of 40 to 60 percent in mileage. Even if we go by a conservative estimate of 40%, then this is an annual saving of approximately two thousand dollars. In case you have more than one car, then your savings can be manifold

Click here to read report

Renewable Hydrogen Strategy launches by Scott Davis 1st August, 2019

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, hydrogenfuelsystem, new agents wanted for hydrogen fuel systems

Hydrogen energy council WA. On 19 July, the Western Australian Government released its Renewable Hydrogen Strategy. The Council aims to position the state as a leader in the global renewable hydrogen industry.
The WA Premier, The Hon. Mark McGowan, stated the government will actively support industry, Hydrogen energy council WA, efforts to grow the renewable hydrogen industry. He stated that “The Strategy will look at developing Western Australia’s domestic production capabilities and opportunities for downstream processing.

It will also look at ways to drive local content, so Western Australian suppliers are in the box seat to capitalize on the potential of hydrogen.
As a part of the McGowan Government’s drive for innovation and economic diversification, the Western Australian Renewable Hydrogen Council was established in 2018. The Western Australian Renewable Hydrogen Council informed the development of the strategy.

Whilst the vision is orientated towards an export market, Minister
Alannah MacTiernan recognises that the development of a market will not occur withoutsignificant investment and lead times.

https://www.energycouncil.com.au/analysis/renewable-hydrogen-strategy-launches/

Hydrogen Gains verification from the ” Toman Institute” UK

hydrog2
0 comments
patent, petrol, savings, scientist, shipping, trucking, Uncategorized, water fuel

The Toman Institute is a UK / Irish Based institute which has just released reports and findings on the proven savings of using Hydrogen gas at the 12.5 % ratio, so as to produce fuel savings and reduction of emissions of carbon oxides and particular matter from the exhaust of a diesel fueled engine.

It has been reported that hydrogen injection into the air intake of the diesel engine, pre turbocharger, increases the ignition temperature of the fuel as well as increasing the flame speed and rate of combustion of diesel fuel. This sharp increase in combustion rate results in the fuel being totally burnt at the top of the combustion stroke at a higher temperature so that there is less NOX emissions .

It was found this was very successful at low engine speed in built up city driving

At Higher speeds on the open road it was found that the hydrogen worked with the turbocharger to provide extra oxygen so as to reduce the NOX emissions as well as delivering more power , fuel savings and reduced carbon particular emissions.

Data from these tests will be uplaoded to this website post as soon as it has been released by the Toman Institute.

Digital MAP/MAF ENHANCER FOR MAP/MAF SENSORSE

hydrog2
0 comments
Digital MAP/MAF ENHANCER FOR MAP/MAF SENSORS, ENHANCER FOR MAP/MAF SENSORS, MAP/MAF enhancer

Digital MAP/MAF ENHANCER FOR MAP/MAF SENSORS Jan 8 2010

Digital MAP_MAF ENHANCER. The eBay style MAP/MAFs are just simple resistors, which work ok with analog signals, but NOT with the newer frequency modulators. To my knowledge, this is the first combined unit to work with either VOLTAGE OR FREQUENCY (switchable); does away with the need to switch between Highway or City driving like the cheaper stuff. Also, some MAP/MAFS use a voltage increase, not a decrease. Tthis unit is the only one that handles all situations.

The EFIE/MAF combos above are our FIRST choice. That MAF/MAP is designed only for VOLTAGE measurements, not frequency. Generally- most cars and trucks will have at least ONE MAF or MAP that is VOLTAGE adjusted. You can use the above Combos on either one to make it work well. Occasionally, you will run into a car that has both MAF and MAP that are FREQUENCY adjusted. In that rare case- you will need the MAF below in addition to the combo above.

Installation/adjustment instructions included with MAP/MAF enhancer upon purchase.

More details from the manufacturer:

Our new frequency based MAP/MAF enhancer is the first universal MAP/MAF Sensor Enhancer. It can be used for devices that output a frequency to the computer, or devices that send an analog voltage signal.

Frequency Type MAP/MAF Sensors

This device works with any standard 5 volt frequency coming from the device, and will attenuate that frequency based on the position of it’s controlling potentiometers. It will work with frequency type Ford MAP sensors. It has worked with all frequency type MAFs it has been tested on. It’s frequency range is from 30 Hz up to 17 Khz. It has been successfully used on a frequency MAF that operated in the range of 7 Khz to 17 Khz.

Analog MAP/MAF Senosrs

There is also an analog port for use with analog voltage types of MAP or MAF. This is the type of device that are currently controlled with MAP enahancers that you can buy from Ebay. Most analog MAF/MAPs need to have the voltage attenuated in order to lean the air/fuel mix. However, some types of MAP/MAF sensor need to have the voltage increased in order to lean the mix. The Ebay MAP enhancers cannot handle this type of of device. However, ours can. By changing one switch position, this device will change from decreasing the voltage to increasing the voltage.

Digital MAP_MAF ENHANCER. Note, if you like having a “dual edge” MAP enhancer, where you have to flip the switch to change from city to highway driving, then you won’t want to use this board. This device was designed to be set up properly for general use, and then left alone. We don’t feel that having to manually change settings while driving is necessary or desirable.

EFIE: The Acronym for Better Performance of HHO device

Digital MAP_MAF ENHANCER. The EFIE is the acronym for Electronic Fuel Injection Enhancer. Why is this important? If you are using HHO generator to catalyze gas efficiency, don’t be surprised if your car is using more fuel as a result. Each vehicle is equipped with a computer (ECU) to ensure that the vehicle is running as it should. When you introduce a gas saver device, the HHO gas is integrated into the engine.

Good so far?

Well, here’s the problem. If the computer in your car feels the extra oxygen injected into its engine, it attempts to balance out the equation by ejecting more fuel. That’s an anathema of what the HHO cell gas savers are trying to do.

The EFIE is the electronic circuit solution to prevent the car from overcompensating. This also makes the maintenance easier. This device has an on and off switch. If you remove the HHO device from your vehicle (particularly during the winter season), you just turn off the electronic fuel injection system so the engine returns to the typical injection mode. When you install back the HHO device, you just set the EFIE back to the “on” position.

We have EFIE for sale to complement your HHO device. What is considered to be normal fuel injection in most engines is actually a very inefficient process resulting to a lot of wastage. The water hybrid will not only boost fuel mileage but also improve the acceleration and efficiency of the engine, resulting to less expense for the maintenance of the car. Ask for our advice on which electronic fuel injection enhancer is best for you.

New power Supply/electrolysis cell combination

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel systems for cars

New power Supply/electrolysis cell combination

After several months of extensive trials and improvements a  HFS PWM power supply / electro-winning cell combination has finally been released.
New power Supply/electrolysis cell combination.  This “Combination”  has the current control control ability of the older style inefficient PWM Power supply modules without the problems of massive voltage drop on the internal circuitry and overheating / thermal runaway of the old inefficient  systems.
This power supply is designed and proven to work on hydrogen generators , unlike the older PWM units that are designed for motor speed control functions.

Contact Gavan on 0403177183 glknox11@live.com,     https://hydrogenfuelsystems.com.au

Mosfet as a Hydrogen Fuel System Switch

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, hydrogenfuelsystem, new agents wanted for hydrogen fuel systems, patent, petrol, savings, scientist, shipping, trucking, Uncategorized, water fuel

This blog is a Product of           https://www.hydrogenfuelsystems.com.au

Mosfet as a Hydrogen Fuel-System Switch. MOSFET’s make very good electronic switches for controlling loads and in CMOS digital circuits as they operate between their cut-off and saturation regions.

MOSFET’s are relatively simple  electronic devices which being voltage controlled devices , with current draw low in the GS circuit , means that is not going to be a device that is strong consumer of electrical energy.   The figure below basically shows that the MOSFET circuit equates to a simple switch which can be switched on by adjusting  the input voltage to the gate terminal

Hydrogen generators have been proven to work in improving engine power and efficiency . and so there have been a flux of “would be , could be” inventors with little or no knowledge of electro-chemistry, who  having viewed fake reports on YOUTUBE  of work on hydrogen generation , have suddenly become “Experts”  in the Discipline of Chemical Engineering and are convinced in the  “Conspiracy Theory” that tertiary trained Scientists are puppets of the petrochemical industry  and cant be trusted. They are convinced they can solve the worlds energy problem and know that Free energy does exist.

There is no such thing as free energy and hydrogen generation is not an example of free energy. 

Hydrogen does increase the power and efficiency of an internal combustion engine because it increases the Chemical Thermodynamic Efficiency of an internal combustion engine.   

Now if your  want to learn  more about Chemical Thermodynamics click on the following link and Read, Explore, Learn.           

C-02-A-Chemistry-Chapter-11-May-17

These circuits are simple to build and provide an effective means of controlling a hydrogen generating circuit without wasting electrical energy producing a high frequency  modulated circuit that is prone to overheating and failure.

The empirical voltage required  for hydrogen generation in electrolysis is close to 2.2 volts.  A modern vehicle alternator is able to generate between 13.2 and 13.8 volts.  Effectively this means that 6 cells each operating at 2.2 volt uses all the applied  Voltage / input energy of a Modern Battery/ alternator.  Common power supply units used in most hydrogen generators are PWM circuits that Use between 1.5 and 2 volts in controlling the power supplied to these inefficient hydrogen generators such as the  neutral plate systems.

This is tragic as it equates to losing a major percentage of the input energy.  Using the MOSFET Circuits designed by hydrogenfuelsystems pty ltd avoids this loss provides more energy for generating hydrogen Gas.

There are several effective  patented  units which will be shown in a later post  on this site.  There are many less efficient systems which  can be easily identified by developing an understanding of how DC power supply systems work

In the meantime any budding electronics wizz can use the post shown below, linked heading MOSFET as a Switch             

to design you own efficient power supply switch.

 

 

 

MOSFET as a Switch

 

High Current DC switches for use on Hydrogen generator systems

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, hydrogenfuelsystem, new agents wanted for hydrogen fuel systems, patent, petrol, savings, scientist, shipping, trucking, Uncategorized, water fuel

High Current DC Switch for use on hydrogen fuel systems

High Current DC switches. Mechanical relays used to be the way to switch high currents; these days, we have a whole class of FETs available to do that job.

I use this small board to gate the power supply current to one of my solid-state amplifiers, but it can be used as a gate for almost anything requiring the switching of DC currents up to 100 amps.

With the FET shown here, this board is set up to switch 28 volts at up to 30 amps, and at that load, will drop only half a volt across the FET. When used to gate the power to one of the 23cm 150w amplifiers (10A or so), the loss across the switch is only about 2 tenths of a volt.

Consequently much less electrical energy is lost in the electronic components , leaving more electrical energy available to produce Hydrogen gas / chemical energy

This Post is a simple design that avoids the faulty and defective design used for common Hydrogen generator systems. Typically a PWM power supply is used for Hydrogen generators , but a PWM unit is designed for DC motor control circuits. A PWM is not for electrolysis circuits. Whats the difference you ask……. Good question.

High Current DC switches.

A DC motor has inductive coils which produce a back voltage when operating and reduce their efficiency. BY having a pulse wave modulation system , high frequency DC pulses are produced. This avoids the Back voltage problem and making the DC motor efficiency increase. In an electrolysis circuit there is no such inductive back voltage to reduce the efficiency. Using a PWM unit simply introduces an electronic circuit that uses electrical energy , overheats and limits the efficiency of the hydrogen Generator circuit . SO AGAIN I HEAR YOU ASK , WHY ARE WE USING PWM POWER SUPPLIES. Its great that out ESP is switched on today

Good Question… simple answer. A PWM circuit is an easy control unit to use , especially by so called “EXPERTS in HHO”. Experts who have little more than a Primary school education , and specializing in finger painting. Am I arrogant, sometimes rude, opinionated, Educated, Multi skilled? Yes I am a Teacher with Multiple University degrees , a University Resaerch Scientist and Teacher? I AM an expert in Chemistry, Theoretical Physics, Chemical and Civil Engineering and Education. I know We need to effectively tackle the problem of Global warmng with “REAL” Science not make believe “witch doctor mumbo Jumbo”. My systems are patented and proven. This passage is all about effectively manufacturing Hydrogen and in particular effective power supply systems to produce it

Please read ahead in the following passage and learn how to provide power without wasting input energy. The MOSFET circuits shown can be easily “daisy chained” together in parallel to provide better regulated power. It does not overheat, does not waste energy as a high frequency pulsating supply and works in all conditions . Email me at glknox11@live.com if you have any more questions . Happy reading.

With minor component changes on the board, and the selection of a different FET, the switching of voltages and currents much higher than that can be achieved. Alternatively, additional FETs can be connected in parallel for higher currents, each one sharing the board connections. Configured like this, the FETs must be identical types, preferably from the same lot number.

For the newer 65v LDMOS amplifiers, I added a higher voltage version of this switch to the parts page, capable of handling up to 80v at 50 amps (this switch uses a 100v device.

To operate the switch, all that is required is grounding the ‘on’ port. Current at this port is only 5ma. Un-grounding this port turns the switch back off.

When used with a sequencer or an amplifier control board, this port should be connected to event 2 (so that the amplifier is switched on after the antenna relays have been switched at event 1).

 An extra port is placed on the board to allow the switch to be disabled by an emergency signal (the ‘disable’ port). This port is typically handled by the “kill” function of a control board, which can signal an immediate overriding shutdown during a system fault condition. It does this by pulling the port low.

High Current DC switches. Another application using this extra port is the operation of a remote LNA and it’s bypass relay, which are typically energized by default. Connecting the “on” port to ground, and then the “disable” port to event 1 of a sequencer or control board will allow the LNA to remain on during receive, and then bypassed during the transmit cycle.

The table below the schematic lists the correct R5 values for 12v or 28v operation. Values for 2 different FETs are listed. The voltages shown are approximate ranges, and the ranges can overlap a bit. For example, the 12v configuration would be OK for 9 to 20v, and the 28v values would work well from 20 to about 36v.

High Current DC switches. The kit offered on the parts page (rev 3) is an upgrade to the one shown in the photo above, and can be set up for 12, 28 or 48 volts. The 48v optimization has a range of about 35 to at least 58v. The setup table for this version is shown below the schematic:

Client Questions and Answers regarding using Hydrogen Fuel Systems for cars, trucks generators, pumps

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks

Questions and Answers hydrogen use with diesel , petrol, gasoline, lpg

Client questions regarding using Hydrogen Fuel Systems for cars, trucks generators, pumps

A useful set of questions was sent to me by an International client.  These questions are possible common queries that I have answered here to help you the prospective client.

  1. Can you forward us a block diagram for connections to system?

This is answered under the heading Installation instructions which can be  searched for on the home page

  • What are other Equipment’s required like MCB, cables ,etc.?

Other equipment used / required are –

  1. double insulated twin core 6 mm cable for cars and 8mm for trucking
  2. 30 amp 12 volt / 24 volt circuit Breaker
  3. 30 amp. 12volt / 24 volt relay switch
  4. 50 amp anderson plug
  5. Potassium Hydroxide electrolyte
  6. Distilled water or rain water
  7. What are requirements for installation?

This is answered under the heading “Installation instructions” which can be  searched for on the home page       https://hydrogenfuelsystems.com.au/wp-content/uploads/2015/03/installation-Instructions-4-1.pdf

  • Any training is required? How can we get it?

Prefer using an auto electrician who can read and follow the installation instructions on the web-page….Personal  Training is available by my company auto electrician in Perth West Australia. Email me at glknox11@live.com questions and answers hydrogen

  • Which are replaceable parts?

Pumps are replaceable, Power supplies are replaceable.  In fact all parts are replaceable  but system has  been designed to last indefinitely unless abused

  • How frequently replacement is needed?

Pumps have a 30,000 hour lifespan but last longer under  normal operating conditions …. MY vehicle pumps are 9 years old and working well after 200,000 km

Electronic Power supplies have no stipulated life span and will last indefinitely   … again my vehicle power supply is 9 years old …. There are no wearing parts

  • How these parts can be available?

I CAN SUPPLY PARTS  AS SOON AS  requested

  • What maintenance is required?

Only maintenance is to use distilled water.   Three teaspoon ( 30 grams) of potassium Hydroxide lasts indefinitely as it is never lost from the solution

Clean out cells every 3 years with dilute vinegar solution

One litre of water lasts 10 hours at 22 amp

questions and answers hydrogen

  • How frequently?

3 yearly replace electrolyte and wash out with dilute vinegar solution

One litre of water lasts 10 hours at 22 amp

  1. What is life of system?

Cells do not wear

11.   How to choose the system size? For example:-

a.       We have an installation with 35KVA connected load and 80 to 90 Kwh per day consumption?

A 35KVA generator is  typically  3.3 litre, turbo charged 3 cylinder vertical in-line engine and is best suited to a Gen 10 system

b.      We have another installation with 20KVA connected load and 400 to 480 Units per day consumption?

A 35 KVA generator is  typically  2.14 litre, turbo charged 3 cylinder vertical in-line engine and is best suited to a Gen 10 system

Gen 10 systems are suited to engines up to 4 litre capacity

Gen 15 systems are suited to engines to 8 litre capacity

Larger generators can be serviced by multiple Gen 15 systems connected In parallel up to 19 litre capacity

Generators greater than 19 litre capacity are available but are custom made systems

Which capacity system is useful?

Ground-Breaking Power supplies Massively Increase Hydrogen gas output

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel systems for cars

Ground-Breaking Power supplies Massively Increase Hydrogen gas output

Ground-Breaking Power supplies.  For more information call Gavan 0403177183 glknox11@live.com

glknox@dodo.com.au

https://www.hydrogenfuelsystems.com.au

Ground-Breaking Power supplies. As part of our ongoing R and D I have dedicated time into improving the power supply and control modules which power the Hydrogen generator cell.

One of the issues of any electrolysis unit for mobile units is the available voltage and to a lesser extent the available current.

Current flow is essential to produce hydrogen  gas and using Faradays laws (1832) it is easy to calculate the amount of electrical current needed to produce a given quantity of Hydrogen gas.  Some of the “experts”  on free energy sites still believe that all they need is a resonant and a low current.  My definition of these “EX SPURTS” is that they are a “Drips” under pressure , – Pressure to prove they actually know somewhat more than a “demented earthworm”.

Excuse  my irritation on free energy morons and Getting back to the essential developments of this post….Power supplies

2 electrons are required for every molecule or hydrogen gas produced and electrical current is the flow of electrons through a conductor… 22 amp of current at 13.2 volts supplies enough electrons for a maximum of 0f 4.2 Litre of Hydrogen / oxygen  gas. Any less energy than that will reduce the gas produced.

When producing a DC power supply of fixed current , we have been conditioned to use electronic components such as constant current PWM devices.  There are several faults of such devices in control o fa DC current supply

  1. The electronics of the circuit introduces an internal resistance into the electrolysis circuit which reduces the available voltage for the unit and therefore the number of available cells that can be used for generating hydrogen gas. The REDOX potential for converting water into hydrogen and oxygen is 1.23 volts.  The internal resistance of the electrolysis produces a back voltage of 0.5 volt  and at least 0.5 volt overvoltage is required per cell to sustain a reasonable current flow through the cell. This equates to at least 2.2 volt is required to generate a useful supply of hydrogen gas from an electrolysis cell.  If we are using 6 cells then  we need 6 times 2.2 volt = 13.2 volt , to generate a reasonable supply of hydrogen gas. IF we have a PWM unit that is using 2 volts due to  internal resistance, that reduces our number of usable cells to 5 and drops the system efficiency by almost 20%.        Far too great a power / energy efficiency loss
  1. The PWM units are frequency modulated devices designed for use on DC motors designed to reduce back voltage loss due to reverse inductance and lenses law. This is not a motor and pointless using a complex frequency generating circuit that uses electrical energy in pretending to reach the resonant frequency of water. – which is several  giga-hertz not kilo-hertz as produced by commercial PWM devices.
  2. The High frequency PWM circuit forces the electrolysis cell to act as a capacitor , constantly charging and discharging and introducing a resistance known as Capacitive reactance.  Capacitive reactance is an internal resistance that uses more of the available input voltage , further putting a strain   on the voltage required for the OXIDATION / REDUCTION reaction producing water.

One solution to this situation is to run DC current into the system and control the current flow simply by the solution concentration. Sounds great but problem is

  1.  as the solution warms the resistance further falls and current flow increases exponentially overloading the vehicle generator/ alternator
  2. There is no effective control of the gas volume produced
  3. The electrolyte boils and steam is not what we want
  4. Thermal runaway changes the chemical thermodynamics of the electrolysis cells and the break down

So some form of circuit is required to limit the current without introducing a load onto the already voltage sensitive circuit.

With this in mind we have developed a relatively simple circuit that limits the voltage loss, does not produce a pointless high frequency output and yet still is able to control the voltage applied to the system so as to control the current flow and not lead to excessive heating of the electrolyte .

This circuit is simple and uses a number of Power FETS and their biasing potentiometers .   Extensive lengthy testing under a variety of temperatures has shown that this simple circuit is far superior , more robust and easier to use than the common PWM and constant current power supplies commonly used .

Hydrogen fuel systems have included this development into their patented design and manufacturing process.  A great advantage of this design is that it can easily and effectively be retrofitted to older systems currently being used  using PWM power controlling devices.

Because it  is patented process the exact schematics of the units will not be released …. Enough to say ,it is a design with will be incorporated  on all  future hydrogenfuelsystems    generator systems.

Kind regards

Gavan Knox

BSc, BEng, BSc, BEd,

For more information call Gavan 0403177183 glknox11@live.com

glknox@dodo.com.au

https://www.hydrogenfuelsystems.com.au

Fuel savings – Fuel Map and Hydrogen on demand systems for engines

hydrog2
0 comments
economy, fuel savings, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, hydrogenfuelsystem, new agents wanted for hydrogen fuel systems, patent, scientist, water fuel

Fuel savings – Fuel Map and Hydrogen on demand systems for engines

Received an interesting question today about how hydrogen systems  use the fuel map to deliver fuel savings.

My response was as follows

Hello Rob

The electronic fuel enhancer module is designed to alter the sensor signals from the

  1. Oxygen sensor

  2. Lambda sensor

  3. Manifold air pressure sensor

  4. Coolant temperature sensor

  5. Intake air temperature sensor

And therefore force the engine ecu to choose a leaner fuel map from its registry , which uses less fuel and delivers more power with a leaner mixture.

The advantage of the enhancer module is that it is only operational when it is powered up. Turning off the ower to the unit allows the engine to return to its normal “inefficient” Fuel map.

Running an engine on Hydrogen and oxygen allows the engine to run leaner with far more power with less fuel input.  The fuel enhancer forces the engine to inject less fuel and further makes it run leaner .  Using Hydrogen injection on a lean fuel map stops the engine overheating due to a number of factors , especially

The enormous increase in the flame speed of the process using hydrogen with the fuel and leading to complete combustion of a smaller fuel charge input followed by adiabatic expansion down the power stroke which in fact cools the engine from within.

 

Hydrogen and the fuel enhancer work together to use the best fuel-map of the ECU to deliver fuel savings and power increase.

More information is visible on the company website https://www.hydrogenfuelsystems.com.au

Please leave comments below at the bottom of this page

Kind regards

Gavan Knox

Manging Director Hydrogen Fuel Systems Pty Ltd

0403177183

https://www.hydrogenfuelsystems.com.au

BSc (Physics, Chemistry), BEng (civil), BEd (Physics, Chemistry, Mathematics, Engineering)

Fuel saver system – gasoline, petrol, diesel, LPG

hydrog2
0 comments
economy, fuel savings, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks

Fuel saver system – gasoline.

Product of           https://www.hydrogenfuelsystems.com.au

https://www.youtube.com/edit?video_referrer=watch&video_id=wMmJSKyAaRQ

Fuel saver – frequency multimeter – Tuning Gen 10 Hydrogen fuel system for maximum savings and increased Power

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel systems for cars, trucking, water fuel

Fuel saver – frequency multimeter – Tuning Gen 10 Hydrogen fuel system

Fuel saver – frequency multimeter.  Over the  few years I have strived to optimize  the fuel efficiency of my V6 , 3.6 L engine through the use of my patented Hydrogen fuel system

We have achieved massive fuel savings and increased condition and longevity of the engine by using our patented Gen 10 Hydrogen fuel system on the vehicle. Today we Achieve savings of 47% on our family car which is very  satisfying, just using the Hydrogen system and an electronic fuel enhancer module that adjusts  the fuel map ,by adjusting the sensor signals from the following engine sensors

  1. Oxygen sensor

  2. Lambda Sensor

  3. Manifold air pressure sensor

  4. Coolant temperature sensor

  5. Intake air temperature sensor

In the case of the V6 commodore engine there is one other engine sensor which can be adjusted so as to improve the engine operating condition.  This is the Mass intake air flow sensor which is located just before the Throttle body assembly of the engine.  I have never adjusted this sensor as

  1. we have excellent fuel savings already and

  2. we did not have access to a meter which can be used to measure and adjust the Mass intake air flow (MAF) sensor sensor readings

However with the help of fellow university colleagues I made aware of a new device produced by an Australia-wide electronics company called JAYCAR electronics   –     called

Cat III True RMS Auto-ranging 4000 Count DMM with Temperature  Cat Number = QM1551

This device can be used along with our Mass air flow  (MAF) enhancer module to adjust the signal from the mass airflow sensor   on any  vehicle that has a frequency modulated sensor to measure and control and Mass air flow readings sent  to the engine ECU.

IN the past  ( before 2006), the sensors which measure air intake volume were simple Analog  / voltage based systems , and were able to be adjusted by simply putting a resistor in the circuit from the MAF sensor, but these Older style sensors were slow to react , inefficient and easily corrupted making the engine run in Limp Mode.

The Modern , improved and more stable MAF sensor used jn Europe, Australia and ASIA  were the frequency controlled MAF sensors , and now with the New Multimeter from JAYCAR  (Cat Number = QM1551) – It is easily adjusted to further improve the fuel map settings.  Please note that The USA is still a little behind in Using frequency controlled sensors in the MAF Sensor and even the oxygen sensor , as the rest of the world now use… WHY you ask….. well  the USA still has not accepted the metric system as they think they Know Best….. I will leave it to you to come to an opinion on their antiquated choices.

IN the past the MAF sensor is either ignored or the engine ECU is adjusted  be able  to use  a MAFLESS Tune , so as to ignore the MAF sensor readings and their effect on the engine.

IN my case I have found the MAF sensor has been a major sensor for stop start driving , whereas the MAP sensor is the a major sensor for driving at constant Speed

My vehicle economy has been improved from 12.5 L/100 km to 7.2 L/100 km  without using adjustment for the MAF sensor readings. Now with the availability if the New Multimeter from Jacar electronics , the vehicle savings have been further improved which is great fore driving in heavy , stop start  city conditions

For more  information call Gavan 0403177183
BSc, BSc, BEng, MSc, BEd
email glknox11@live.com
https://hydrogenfuelsystems.com.au

0403177183

Fuel saver -Hydrogen system- Importance of secure strong Electrical Terminals and connections

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply

Fuel saver -Hydrogen system- Importance of secure strong Electrical Terminals and connectionsElectrical Terminals

Secure strong Electrical Terminals

Many people have asked me how important is it make all electrical  terminals secure ? – secure strong Electrical Terminals

My answer is  always “good electrical terminals and junctions must always be perfect, if not welded terminals, so as to reduce / stop energy losses,,, energy that must be used to generate hydrogen rather than produce heat”

The oxidation/ reduction potential of water to produce hydrogen gas is Locked by Science, Locked by Chemical Thermodynamics, Locked by Electrochemistry, Locked by God (Im not meaning to sacrilegious)  If you do not arrange your system to use this REDOX voltage per cell, then all you will produce is steam.  If you want steam then use a Kettle.

Electrolysis of water is the decomposition of water into oxygen and hydrogen gas due to an electric current passed through the water. The reaction has a standard potential of −1.23 V, meaning it ideally requires a potential difference of 1.23 volts to split water

The potential difference of 1.23 volts, is the absolute minimum voltage per cell for the electrolytic reaction, but then there is the voltage required to overcome the internal resistance of the solution.  When everything is taken into account , then 2.2 volts per cell is required to produce hydrogen and oxygen gas in electrolysis- secure strong Electrical Terminals    If fail to provide 2.2 volts for each cell in the system then you cannot produce Hydrogen gas.

Take for example a case when the faulty terminals use 0.4 volts as heat, the voltage drop due to internal resistance of the solution is always 1 volt and therefore less than 1.23 volts is available for the REDOX reaction to produce hydrogen gas.  All you produce is steam

Does this explain the importance of making sure that all electrical terminals are secure and do not waste input voltage as heat

Hydrogen fuel systems pty ltd has solved many terminal risks by MIG welding terminals.  Eg all electrolysis connections in the cells are Mig welded , not just bolted together

In the case of wire junctions that cannot be welded, the bare copper wires must be protected from oxidation and corrosion by  coating wires with protective fluids such as lanoline.  Hydrogen fuel systems also protect wire  connections and at reduce internal resistance of connections by using power ratchet crimpers  and  soldering all crimped wires to connecting terminals

As I have discussed before the key fault of these “Neutral plate arrangements” sold by majority of USA “Hydrogen producer companies” is that many of these companies use up to 101  plates to try and get more gas produced.  These make believe Chemists fail to understand that at 101 plates they actually are trying to have 100 cells.  To get 100 cells operating you need an input voltage of 220 volts…. From a car that only uses a 12 volt battery…. What these cells make is steam and lots of it.

If they use a voltage inverter to ramp up 220 volts and then use 30 amp to make gas then they are trying to get their  battery to generate 220 x 30 = 6600 watts of electrical power…. This is impossible

Call me on 0403177183 or glknox11@live.com  if you would like to learn more.  I am a registered teacher, Physicist, Chemist and Engineer,,, not a “would be, could be” pretend Scientist

Kind regards

Gavan Knox

Wideband Oxygen Sensors and Air/Fuel (A/F) Sensors

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Wideband Oxygen sensor

Wideband Oxygen Sensor (which may also be called Wide Range Air Fuel (WRAF) sensors) and Air/Fuel (A/F) Sensors, are replacing conventional oxygen sensors in many late model vehicles.

A wideband O2 sensor or A/F sensor is essentially a smarter oxygen sensor with some additional internal circuitry that allows it to precisely determine the exact air/fuel ratio of the engine. Like an ordinary oxygen sensor, it reacts to changing oxygen levels in the exhaust. But unlike an ordinary oxygen sensor, the output signal from a wideband O2 sensor or A/F sensor does not change abruptly when the air/fuel mixture goes rich or lean. This makes it better suited to today’s low emission engines, and also for tuning performance engines.

 

Oxygen Sensor Outputs

An ordinary oxygen sensor is really more of a rich/lean indicator because its output voltage jumps up to 0.8 to 0.9 volts when the air/fuel mixture is rich, and drops to 0.3 volts or less when the air/fuel mixture is lean. By comparison, a wideband O2 sensor or A/F sensor provides a gradually changing current signal that corresponds to the exact air/fuel ratio.

Another difference is that the sensor’s output voltage is converted by its internal circuitry into a variable current signal that can travel in one of two directions (positive or negative). The current signal gradually increases in the positive direction when the air/fuel mixture becomes leaner. At the “stoichiometric” point when the air/fuel mixture is perfectly balanced (14.7 to 1), which is also referred to as “Lambda”, the current flow from the sensor stops and there is no current flow in either direction. And when the air/fuel ratio becomes progressively richer, the current reverses course and flows in the negative direction.

The PCM

The PCM sends a control reference voltage (typically 3.3 volts on Toyota A/F sensor applications, 2.6 volts on Bosch and GM wideband sensors) to the sensor through one pair of wires, and monitors the sensor’s output current through a second set of wires. The sensor’s output signal is then processed by the PCM, and can be read on a scan tool as the air/fuel ratio, a fuel trim value and/or a voltage value depending on the application and the display capabilities of the scan tool.

For applications that display a voltage value, anything less than the reference voltage indicate a rich air/fuel ratio while voltages above the reference voltage indicates a lean air/fuel ratio. On some of the early Toyota OBD II applications, the PCM converts the A/F sensor voltage to look like that of an ordinary oxygen sensor (this was done to comply with the display requirements of early OBD II regulations).

How a Wideband O2 Sensor Works

Internally, wideband O2 sensors and A/F sensors appear to be similar to conventional zirconia planar oxygen sensors. There is a flat ceramic strip inside the protective metal nose cone on the end of the sensor. The ceramic strip is actually a dual sensing element that combines a “Nerst effect” oxygen pump and “diffusion gap” with the oxygen sensing element. All three are laminated on the same strip of ceramic.

 

Exhaust gas

Exhaust gas enters the sensor through vents or holes in the metal shroud over the tip of the sensor and reacts with the dual sensor element. Oxygen diffuses through the ceramic substrate on the sensor element. The reaction causes the Nerst cell to generate a voltage just like an ordinary oxygen sensor. The oxygen pump compares the change in voltage to the control voltage from the PCM, and balances one against the other to maintain an internal oxygen balance. This alters the current flow through the sensor creating a positive or negative current signal that indicates the exact air/fuel ratio of the engine.

The current flow is not much, usually only about 0.020 amps or less. The PCM then converts the sensor’s analog current output into a voltage signal that can then be read on your scan tool.

What’s the difference between a wideband O2 sensor and an A/F sensor? Wideband 2 sensors typically have 5 wires while most A/F sensors have 4 wires.

O2 SENSOR HEATER CIRCUIT

Like ordinary oxygen sensors, wideband O2 sensors and A/F sensors also have an internal heater circuit to help them reach operating temperature quickly. To work properly, wideband and A/F sensors require a higher operating temperature: 1292 to 1472 degrees F versus about 600 degrees F for ordinary oxygen sensors. Consequently, if the heater circuit fails, the sensor may not put out a reliable signal.

The heater circuit is energized through a relay, which turns on when the engine is cranked and the fuel injection relay is energized. The heater circuit can pull up to 8 amps on some engines, and is usually pulse width modulated (PWM) to vary the amount of heat depending on engine temperature (this also prevents the heater from getting too hot and burning out). When the engine is cold, the duty ratio (on time) of the heater circuit will be higher than when the engine is hot. A failure in the heater circuit will usually turn on the Malfunction Indicator Lamp (MIL) and set a P0125 diagnostic trouble code (DTC).

 

Oxygen Sensor Problems

Like ordinary oxygen sensors, wideband O2 sensors and A/F sensors are vulnerable to contamination and aging. They can become sluggish and slow to respond to changes in the air/fuel mixture as contaminants build up on the sensor element. Contaminants include phosphorus from motor oil (from worn valve guides and rings), silicates from antifreeze (leaky head gasket or intake gaskets, or cracks in the combustion chamber that leak coolant), and even sulfur and other additives in gasoline. The sensors are designed to last upwards of 200,000 km but may not go the distance if the engine burns oil, develops an internal coolant leak or gets some bad gas.

Wideband 2 sensors and A/F sensors can also be fooled by air leaks in the exhaust system (leaky exhaust manifold gaskets) or compression problems (such as leaky or burned exhaust valves) that allow unburned air to pass through the engine and enter the exhaust.

Wideband A/F Sensor Diagnostics

As a rule, the OBD II system will detect any problems that affect the operation of the oxygen or A/F sensors and set a DTC that corresponds to the type of fault. Generic OBD II codes that indicate a fault in the O2 or A/F sensor heater circuit include: P0036, P0037, P0038, P0042, P0043, P0044, P0050, P0051, P0052, P0056, P0057, P0058, P0062, P0063, P0064.

Codes that indicate a possible fault in the oxygen sensor itself include any code from P0130 to P0167. There may be additional OEM “enhanced “P1” codes that will vary depending on the year, make and model of the vehicle.

The symptoms of a bad wideband O2 sensor or A/F sensor are essentially the same as those of a conventional oxygen sensor: Engine running rich, poor fuel economy and/or an emission failure due to higher than normal levels of carbon monoxide (CO) in the exhaust.

Possible causes in addition to the sensor itself having failed

Possible causes in addition to the sensor itself having failed include bad wiring connections or a faulty heater circuit relay (if there are heater codes), or a wiring fault, leaky exhaust manifold gasket or leaky exhaust valves if there are sensor codes indicating a lean fuel condition.

What to Check: How the sensor responds to changes in the air/fuel ratio. Plug a scan tool into the vehicle diagnostic connector, start the engine and create a momentary change in the air/fuel radio by snapping the throttle or feeding propane into the throttle body. Look for a response from the wideband O2 sensor or A/F sensor. No change in the indicated air/fuel ratio, Lambda value, sensor voltage value or short term fuel trim number would indicate a bad sensor that needs to be replaced.

Scan tool

Other scan tool PIDS to look at include the OBD II oxygen heater monitor status, OBD II oxygen sensor monitor status, loop status and coolant temperature. The status of the monitors will tell you if the OBD II system has run its self-checks on the sensor. The loop status will tell you if the PCM is using the wideband O2 or A/F sensor’s input to control the air/fuel ratio. If the system remains in open loop once the engine is warm, check for a possible faulty coolant sensor.

Another way to check the output of a wideband O2 sensor or A/F sensor is to connect a digital voltmeter or graphing multimeter in series with the sensor’s voltage reference line (refer to a wiring diagram for the proper connection). Connect the black negative lead to the sensor end of the reference wire, and the red positive lead to the PCM end of the wire. The meter should then show an increase in voltage (above the reference voltage) if the air/fuel mixture is lean, or a drop in voltage (below the reference voltage) if the mixture is rich.

Wideband O2 sensor output

The output of a wideband O2 sensor or A/F sensor can also be observed on a digital storage oscilloscope by connecting one lead to the reference circuit and the other to the sensor control circuit. This will generate a waveform that changes with the air/fuel ratio. The scope can also be connected to the sensor’s heater wires to check the duty cycle of the heater circuit. You should see a square wave pattern and a decrease in the duty cycle as the engine warms up.

Wideband Oxygen Sensor Tech Tips

* On Honda 5-wire “Lean Air Fuel” (LAF) sensors, the 8-pin connector pin for the sensor contains a special “calibration” resistor. The value of the resistor can be determined by measuring between terminals 3 and 4 with an ohmmeter, and will be 2.4K ohms, 10K ohms or 15k ohms depending on the application. If the connector is damaged and must be replaced, the replacement must have the same value as the original. The reference voltage from the PCM to the sensor on these engines is 2.7 volts.

* Saturn also uses a special trim resistor in their wideband O2 sensor connector (pins 1 & 6). The resistor is typically 30 to 300 ohms. The PCM supplied reference voltage is 2.4 to 2.6 volts.

* If a O2 sensor, wideband O2 sensor or A/F sensor has failed because of coolant contamination, do not replace the sensor until the leaky head gasket or cylinder head has been replaced. The new sensor will soon fail unless the coolant leak is fixed.

* Some early Toyota applications with A/F sensors provide a “simulated” O2 sensor voltage to be displayed on a scan tool. The actual value was divided by 5 to comply with early OBD II regulations. Those regulations have since been revised, but be aware if you get a “funky” display on your scan tool

Mass Airflow MAF Sensors

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Mass Airflow  Sensors

MAF

 

Copyright AA1Car

Mass airflow sensors  MAF, which are used on a variety of multiport fuel injection systems, come in two basic varieties: hot wire and hot film. Though slightly different in design, both types of sensors measure the volume and density of the air entering the engine so the computer can calculate how much fuel is needed to maintain the correct fuel mixture.

Mass airflow sensors have no moving parts. Unlike a vane airflow meter that uses a spring-loaded flap, mass airflow sensors use electrical current to measure airflow. The sensing element, which is either a platinum wire (hot wire) or nickel foil grid (hot film), is heated electrically to keep it a certain number of degrees hotter than the incoming air. In the case of hot film MAFs, the grid is heated to 75 degrees C. above incoming ambient air temperature. With the hot wire sensors, the wire is heated to 100 degrees C. above ambient temperature. As air flows past the sensing element, it cools the element and increases the current needed to keep the element hot. Because the cooling effect varies directly with the temperature, density and humidity of the incoming air, the amount of current needed to keep the element hot is directly proportional to the air “mass” entering the engine.

 

MASS AIRFLOW SENSOR OUTPUT

Mass airflow sensors MAF sensor output to the computer depends on the type of sensor used. The hot wire version, which Bosch introduced back in ’79 on its LH-Jetronic fuel injection systems and is used on a number of multiport systems including GM’s 5.0L and 5.7L Tuned Port Injection (TPI) engines, generates an analog voltage signal that varies from 0 to 5 volts. Output at idle is usually 0.4 to 0.8 volts increasing up to 4.5 to 5.0 volts at wide open throttle.

The hot film MAFs, which AC Delco introduced in ’84 on the Buick turbo V6 and have since used on the 2.8, 3.0 and 3.8L V6 engines, produce a square wave variable frequency output. The frequency range varies from 30 to 150 Hz, with 30 Hz being average for idle and 150 Hz for wide open throttle.

fig 1- Digital MAF waveform

Another difference between the hot wire and hot film sensors is that the Bosch hot wire units have a self-cleaning cycle where the platinum wire is heated to 1000 degrees C. for one second after the engine is shut down. The momentary surge in current is controlled by the onboard computer through a relay to burn off contaminants that might otherwise foul the wire and interfere with the sensor’s ability to read incoming air mass accurately.

Fig 2.- engine performance monitor

MASS AIRFLOW SENSOR DIAGNOSTIC FAULT CODES

An engine with a bad MAF sensor may start and stall or be hard to start, it may hesitate under load, idle rough or run excessively rich or lean. The engine may also hiccup when the throttle suddenly changes position.

Often, a dirty or faulty MAF sensor will cause the engine to set a LEAN code and turn on the Check Engine Light. If the MAF sensor wire becomes dirty or is contaminated with oil (from an aftermarket reusable air filter), it will be slow to react to changes in airflow. This may cause the MAF sensor to under-report airflow, causing the engine to run lean.

On OBD II vehicles, the input from the MAF sensor is combined with those form the throttle position sensor, MAP sensor and engine speed to calculate engine load. If your scan tool can display calculated engine load, look at the value to see if the load is low at idle, and higher when the engine is running under load. No change in the reading or a reading that makes no sense could indicate a problem with any of these sensors.

If you suspect a MAF sensor problem, scan for any fault codes. Trouble codes that may indicate a problem with the mass airflow sensor include:

P0100….Mass or Volume Air Flow Circuit

P0101….Mass or Volume Air Flow Circuit Range/Performance Problem

P0102….Mass or Volume Air Flow Circuit Low Input

P0103….Mass or Volume Air Flow Circuit High Input

P0104….Mass or Volume Air Flow Circuit Intermittent

P0171….System too Lean (Bank 1)

P0172….System too Rich (Bank 1)

P0173….Fuel Trim Malfunction (Bank 2)

P0174….System too Lean (Bank 2)

P0175….System too Rich (Bank 2)

On older Pre-OBD II vehicles, you can use a scan tool or manual flash code procedure to read the codes:

GM Pre-OBD II: Code 33 (too high frequency) and Code 34 (too low frequency) on engines with multiport fuel injection only, and Code 36 on 5.0L and 5.7L engines that use the Bosch hot wire MAF if the burn-off cycle after shut-down fails to occur.

Ford Pre-OBD II: Code 26 (MAF out of range), Code 56 (MAF output too high), Code 66 (MAF output too low), and Code 76 (no MAF change during “goose” test).

Of course, don’t overlook the basics, too such as engine compression, vacuum, fuel pressure, ignition, etc., since problems in any of these areas can produce similar driveability symptoms.

 

MASS AIRFLOW SENSOR DIAGNOSIS

Unlike vane airflow meters with their movable flaps, MAFs have no moving parts so the only way to know if the unit is functioning properly is to look at the sensor’s output, or its effect on injector timing.

With the Bosch hot wire sensors, sensor voltage output can be read directly with a digital voltmeter by probing the appropriate terminals. If the voltage readings are out of range, or if the sensor’s voltage output fails to increase when the throttle is opened with the engine running, the sensor is defective and needs to be replaced. A dirty wire (which may be the result of a defective self-cleaning circuit or external contamination of the wire) can make the sensor slow to respond to changes in airflow. A broken or burned out wire would obviously prevent the sensor from working at all. Power to the MAF sensor is provided through a pair of relays (one for power, one for the burn-off cleaning cycle), so check the relays first if the MAF sensor appears to be dead or sluggish.

Vibration-related sensor problems

On GM MAF sensors, there are a couple of quick checks you can do for vibration-related sensor problems. Attach an analog voltmeter to the appropriate MAF sensor output terminal. With the engine idling, the sensor should be putting out a steady 2.5 volts. Tap lightly on the sensor and note the meter reading. A good sensor should show no change. If the analog needle jumps and/or the engine momentarily misfires, the sensor is bad and needs to be replaced. You can also check for heat-related problems by heating the sensor with a hair dryer and repeating the test.

This same test can also be done using a meter that reads frequency. The older AC Delco MAF sensors (like a 2.8L V6) should show a steady reading of 30 to 50 Hz at idle and 70 to 75 Hz at 3,500 rpm. The later model units (like those on a 3800 V6) should read about 2.9 kHz at idle and 5.0 kHz at 3,500 rpm. If tapping on the MAF sensor produces a sudden change in the frequency signal, it’s time for a new sensor.

On the GM hot film MAFs, you can also tap into the onboard computer data stream with a scan tool to read the MAF sensor output in “grams per second” (GPS). The reading might go from 3 to 5 GPS at idle up to 100 to 240 GPS at wide open throttle and 5000 RPM.

The scantool GPS reading at idle will vary by engine displacement. The larger the engine, the higher the GPS reading at idle. The GPS idle reading will roughly correspond to engine displacement in liters. A 3.0L V6 engine, for example, will generate a GPS reading of about 3.0 grams per second at idle. A larger 5.0L V8 would read around 5 grams per second, and a smaller 2.0L four cylinder would read around 2 grams per second at idle.

published MAF sensor GPS reading specification

Some vehicle manufacturers publish MAF sensor GPS reading specifications for specific engine speeds. The engine is held steady at the specified RPM to compare the scantool GPS reading to the spec. If the reading is off by more than 10 percent, the MAF sensor is not reading airflow correctly. The cause could be a dirty sensor that needs to be cleaned.

Fig 3 – Bosch Hot wire MAF waveform

Like throttle position sensors, there should be smooth linear transition in sensor output throughout the rpm range. If the readings jump all over the place, the computer won’t be able to deliver the right air/fuel mixture and driveability and emissions will suffer. So you should also check the sensor’s output at various speeds to see that it’s output changes appropriately. This can be done by graphing its frequency output every 500 rpm, or by observing the sensor’s waveform on a scope. The waveform should be square and show a gradual increase in frequency as engine speed and load increase. Any skips or sudden jumps or excessive noise in the pattern would tell you the sensor needs to be replaced.

MAF sensor output

Another way to check MAF sensor output is to see what effect it is has on injector timing. Using an oscilloscope or multimeter that reads milliseconds, connect the test probe to any injector ground terminal (one injector terminal is the supply voltage and the other is the ground circuit to the computer that controls timing). Then look at the duration of the injector pulses at idle (or while cranking the engine if the engine won’t start). Injector timing varies depending on the application, but if the mass airflow sensor is not producing a signal, injector timing will be about four times longer than normal (possibly making the fuel mixture too rich to start). You can also use millisecond readings to confirm fuel enrichment when the throttle is opened during acceleration, fuel leaning during light load cruising and injector shut-down during deceleration. Under light load cruise, for example, you should see about 2.5 to 2.8 Ms duration.

Fig 4 —  Ford Mass airflow sensor

CLEANING FORD MAF SENSORS

For some reason, Ford vehicles have had a history of MAF sensor problems caused by contamination. In some cases, dirt gets past a leaky air filter and fouls the sensor wire. In other cases, carbon varnish builds up on the sensor from fuel vapors backing up through the intake manifold. Either way, contamination makes the MAF sens3B”>

The engine coolant temperature Sensors

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

The engine coolant temperature (ECT) Sensor

The engine coolant temperature (ECT) sensor is a relatively simple sensor that monitors the internal temperature of the engine. Coolant inside the engine block and cylinder head(s) absorbs heat from the cylinders when the engine is running. The coolant sensor detects the change in temperature and signals the Powertrain Control Module (PCM) so it can tell if the engine is cold, warming up, at normal operating temperature or overheating.

The coolant sensor is extremely important because the sensor’s input to the PCM affects the operating strategy of the entire engine management system. That’s why the coolant sensor is often called the “master” sensor.

Many of the fuel, ignition, emissions and drivetrain functions handled by the PCM are affected by the engine’s operating temperature. A different operating strategy is used when the engine is cold than when it is warm. This is done to improve cold driveability, idle quality and emissions. Consequently, if the coolant sensor fails or is giving the PCM a false reading, it can upset a lot of things.

 

HOW THE COOLANT SENSOR AFFECTS ENGINE OPERATION

Input from the coolant sensor may be used by the PCM for any or all of the following control functions:

  1. Start up fuel enrichment on fuel injected engines. When the PCM receives a cold signal from the coolant sensor, it increases injector pulse width (on time) to create a richer fuel mixture. This improves idle quality and prevents hesitation while the cold engine is warming up. As the engine approaches normal operating temperature, the PCM leans out the fuel mixture to reduce emissions and fuel consumption. A faulty coolant sensor that always reads cold may cause the fuel control system to run rich, pollute and waste fuel. A coolant sensor that always reads hot may cause cold driveability problems such as stalling, hesitation and rough idle.
  2. Spark advance and retard. Spark advance is often limited for emission purposes until the engine reaches normal operating temperature. This also affects engine performance and fuel economy.
  3. Exhaust gas recirculation (EGR) during warm-up. The PCM will not allow the EGR valve to open until the engine has warmed up to improve driveability. If EGR is allowed while the engine is still cold, it may cause a rough idle, stalling and/or hesitation.
  4. Evaporative emissions control canister purge. Fuel vapors stored in the charcoal canister are not purged until the engine is warm to prevent driveability problems.
  5. Open/closed loop feedback control of the air/fuel mixture. The PCM may ignore the oxygen sensor rich/lean feedback signal until the coolant reaches a certain temperature. While the engine is cold, the PCM will remain in “open loop” and keep the fuel mixture rich to improve idle quality and cold driveability. If the PCM fails to go into “closed loop” once the engine is warm, the fuel mixture will be too rich causing the engine to pollute and waste gas. This condition may also lead to spark plug fouling.
  6. Idle speed during warm-up. The PCM will usually increase idle speed when a cold engine is first started to prevent stalling and improve idle quality.
  7. Transmission torque converter clutch lockup during warm-up. The PCM may not lockup up the torque converter until the engine has warmed up to improve cold driveability.
  8. Operation of the electric cooling fan. The PCM will cycle the cooling fan on and off to regulate engine cooling using input from the coolant sensor. This job is extremely important to prevent engine overheating. Note: On some vehicles, a separate coolant sensor or fan switch may be used for the cooling fan circuit only.

TYPES OF COOLANT SENSORS

Most coolant sensors are “thermistors” that change resistance as the temperature of the coolant changes. Most are the “NTC” (Negative Temperature Coefficient) type where resistance drops as the temperature goes up. With this type of sensor, resistance is high when the engine is cold. As the engine warms up, the internal resistance of the sensor drops until it reaches a minimum value when the engine is at normal operating temperature.

A typical GM coolant sensor, for example, may have around 10,000 ohms resistance at 32 degrees F and drop to under 200 ohms when the engine is hot (200 degrees). A Ford coolant sensor, by comparison, may read 95,000 ohms at 32 degrees and drop to 2,300 ohms at 200 degrees.

Resistance specifications will vary depending on the application, so any sensor that does not read within its specified range should be replaced.

Coolant sensors have two wires (input and return). A 5-volt reference voltage signal is sent from the PCM to the sensor. The amount of resistance in the sensor reduces the voltage signal that then returns to the PCM. The PCM then calculates coolant temperature based on the voltage value of the return signal. This number can be displayed on a scan tool, and may also be used by the instrument panel cluster or driver information center to display the temperature reading of the coolant.

On some applications, a “dual range” coolant temperature sensor may be used. When the coolant reaches a certain temperature, the PCM changes the reference voltage to the sensor so it can read the coolant temperature with higher accuracy (higher resolution).

Older vehicles

On some older vehicles, a different type of coolant sensor may be used. Some of these are essentially an on/off switch that opens or closes at a predetermined temperature. The sensor may be wired directly to a relay to turn the electric cooling fan on and off, or it may send a signal to a warning light on the instrument panel. These older coolant sensors are typically single wire sensors. On other older applications, a single wire variable resistor temperature sensor that grounds through the threads may be used to send a temperature signal to a gauge on the instrument panel. These are typically called temperature “senders” rather than sensors.

 

COOLANT SENSOR LOCATION

The coolant sensor is typically located near the thermostat housing in the intake manifold. On a few vehicles, the coolant sensor may be located in the cylinder head, or there may be two coolant sensors (one for each cylinder bank in a V6 or V8 engine) or one for the PCM and a second for the cooling fan.

The sensor is positioned so the tip will be in direct contact with the coolant. This is essential to produce a reliable signal. If the coolant level is low, it may prevent the coolant sensor from reading accurately.

COOLANT SENSOR SYMPTOMS

Because of the coolant sensor’s central role in triggering so many engine functions, a faulty sensor (or sensor circuit) will often cause cold driveability and emission problems. A bad coolant sensor can also cause a noticeable increase in fuel consumption, and it may cause a vehicle to fail an emissions test if it prevents the engine management system from going into closed loop.

Keep in mind that many coolant sensor problems are more often due to wiring faults and loose or corroded connectors than failure of the sensor itself.

Cold driveability

The coolant sensor’s impact on the engine management system, cold driveability, emissions and fuel economy can also be influenced by the thermostat. If the thermostat is stuck open, the engine will be slow to warm up and the coolant sensor will read low. Or, if someone installed the wrong thermostat for the application or removed the thermostat altogether, it will prevent the engine from reaching normal operating temperature and cause the coolant sensor to read low.

A faulty coolant sensor may also cause the engine to overheat if it fails to energize the cooling fan relay when the engine gets hot.

A faulty coolant sensor may also cause inaccurate coolant temperature gauge readings on the instrument panel.

COOLANT SENSOR DIAGNOSTIC FAULT CODES

On 1996 and newer vehicles with OBD II onboard diagnostic systems, a faulty coolant sensor may prevent some of the system monitors from running. This will prevent the vehicle from passing an OBD II emissions test because the test can’t be done unless all the required system monitors have run and passed.

The OBD II system should catch the fault, turn on the Check Engine Light or Malfunction Indicator Lamp (MIL), and set one of the following diagnostic trouble codes:

P0115….Engine Coolant Temperature Circuit
P0116….Engine Coolant Temperature Circuit Range/Performance
P0117….Engine Coolant Temperature Circuit Low Input
P0118….Engine Coolant Temperature Circuit High Input
P0119….Engine Coolant Temperature Circuit Intermittent

On older pre-OBD II vehicles, the Check Engine light may come on if the coolant sensor is shorted, open or is reading out of range. GM coolant sensor codes include codes 14 & 15, Ford codes are 21, 51 & 81, and Chrysler codes are 17 & 22.

COOLANT SENSOR DIAGNOSIS

A visual inspection of the coolant sensor will sometimes reveal a problem such as severe corrosion around the terminal, a crack in the sensor, or coolant leaks around the sensor. But in most cases, the only way to know if the coolant sensor is good or bad is to measure its resistance and voltage readings.

On vehicle systems that provide direct access to sensor data with a scan tool, the coolant sensor’s output can usually be displayed in degrees Centigrade (C) or Fahrenheit (F). The coolant sensor should read low (or ambient temperature) when the engine is cold, and high (around 200 degrees) when the engine is hot. No change in the reading or a reading that obviously does not match engine temperature would indicate a faulty sensor or a wiring problem.

Internal resistance

The internal resistance of a coolant sensor can also be checked with an ohmmeter or DVOM (digital volt ohm meter) and compared to specifications. If the sensor is open, shorted or reads out of range, it must be replaced.

If the resistance of a coolant sensor is within specifications and changes as engine temperature changes, but the engine is not going into closed loop, the fault is in the wiring or PCM. Further diagnosis will be needed to isolate the problem before any parts are replaced.

One trick here is to use a sensor simulator tool to feed a simulated temperature reading through the sensor’s wiring harness to the PCM. If the wiring continuity is good but the PCM fails to go into closed loop when you send it a “hot coolant” signal, the problem is in the PCM.

 

COOLANT SENSOR VOLTAGE CHECKS

You can also use a voltmeter or digital storage oscilloscope (DSO) to check the sensor’s output. Specs vary, but generally a cold coolant sensor will read somewhere around 3 volts. As the engine warms up and reaches operating temperature, the voltage drop should gradually decrease down to about 1.2 to 0.5 volts. If you’re using a scope to display the voltage signal, you should get a trace that gradually slopes from 3 volts down to 1.2 to 0.5 volts in three to five minutes (or however long it normally takes the engine to reach normal operating temperature).

If the voltage drop across the coolant sensor reads at or near 5 volts, it means the sensor is open or it has lost its ground connection. If the voltage is close to zero, the sensor is shorted or it has lost its reference voltage.

When working on 1985 and up Chrysler products, watch out for a sudden voltage increase as the engine warms up. This is normal and is produced by a 1000 ohm resistor that switches into the coolant sensor circuit when the sensor’s voltage drops to about 1.25 volts. This causes the voltage to jump back up to about 3.7 volts, where it again continues to drop until it reaches a fully warmed up value of about 2.0 volts.

Sudden voltage changes

Sometimes a coolant sensor will suddenly go open or short when it reaches a certain temperature. If your voltmeter has a “minimum/maximum” function, you can catch sudden voltage fluctuations while the sensor is warming up. If you are viewing the voltage pattern on a scope, a short will appear as a sudden drop or dip in the trace to zero volts. An open would make the trace jump up to the VRef voltage line (5 volts).

If the coolant sensor reads normally when cold (high resistance and 3 or more volts), but never seems to reach normal temperature it could be telling the truth! An open thermostat or the wrong thermostat may be preventing the coolant from reaching its normal operating temperature.

COOLANT SENSOR REPLACEMENT

Most coolant sensors are not replaced unless they have failed. A coolant sensor that is shorted, open or reading out of range obviously can’t provide a reliable temperature signal and must be replaced for the engine management system to function properly. But many experts also recommend installing a new coolant sensor if you are replacing or rebuilding an engine. Why? Because coolant sensors can deteriorate with age and may not read as accurately as they did when they were new. Installing a new sensor can eliminate a lot of potential problems down the road.

It is also a good idea to replace the coolant sensor and thermostat if the engine has experienced a case of severe overheating. Abnormally high engine temperatures can damage these components and may cause them to misbehave or fail prematurely.

Replacing a coolant sensor requires draining some of the coolant from the cooling system. You do not have to drain the entire radiator. Just open the drain valve and let out enough coolant so the coolant level in the engine is below the sensor.

Coolant condition check

This would be a good to check the condition of the coolant, and to replace it if the coolant is more than three years old (conventional coolant) or five years old (long life coolant). A coolant change and a flush would also be a good idea if the coolant shows any signs of contamination.

The threads on the coolant sensor may be pre-coated with sealer to prevent coolant leaks. Tighten the sensor carefully to prevent damage.

Once the new sensor has been installed, you can refill the cooling system. Make sure all the air is out of the cooling system. Air trapped under the thermostat may cause the engine to overheat or the coolant sensor to not read correctly.

www.hydrogenfuelsystems.com.au

Gavan Knox

BSc (physics), BSc (chemisty), BEng (Civil), BEd (Physics/Maths),

glknox11@live.com

0403177183

Engine Air Temperature Sensor

hydrog2
0 comments
diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, hydrogenfuelsystem, new agents wanted for hydrogen fuel systems, patent, petrol, savings, scientist, shipping, trucking, Uncategorized

Engine Air Temperature Sensor

Engine Air Temperature Sensor

The Intake Air Temperature sensor (IAT) monitors the temperature of the air entering the engine. The engine computer – PCM –  needs this information to estimate air density so it can balance air air/fuel mixture. Colder air is more dense than hot air, so cold air requires more fuel to maintain the same air/fuel ratio. The PCM changes the air/fuel ratio by changing the length (on time) of the injector pulses.

On pre-OBD II vehicles (1995 & older), this sensor may be called an Air Charge Temperature (ACT) sensor, a Vane Air Temperature (VAT) sensor, a Manifold Charging Temperature (MCT) sensor, a Manifold Air Temperature (MAT) sensor or a Charge Temperature Sensor (CTS).

HOW THE AIR TEMPERATURE SENSOR WORKS

The Intake Air Temperature sensor is usually mounted in the intake manifold so the tip will be exposed to air entering the engine. On engines that use mass airflow (MAF) sensors to monitor the volume of air entering the engine, the MAP sensor will also have an air temperature sensor built into it. Some engines may also have more than one air temperature sensor (two if it has a split intake manifold or separate intake manifolds on a V6 or V8 engine).

The air temperature sensor is a thermistor, which means its electrical resistance changes in response to changes in temperature.

It works the same as a coolant sensor. The PCM applies a reference voltage to the sensor (usually 5 volts), then looks at the voltage signal it receives back to calculate air temperature. The return voltage signal will change in proportion to changes in air temperature. Most air temperature sensors are negative temperature coefficient (NTC) thermistors with high electrical resistance when they are cold, but the resistance drops as they heat up. However, some work in the opposite manner. They are positive temperature coefficient (PTC) thermistors that have low resistance when cold, and increase in resistance as they heat up. The changing resistance of the sensor causes a change in the return voltage back to the PCM.

On older pre-OBD II applications (1995 & older vehicles), the signal from the air temperature sensor may also be used to turn on the cold start injector (if used) if the outside air temperature is cold. On some of these older applications, the air temperature sensor signal may also be used to delay

the opening of the EGR valve until the engine warms up.

Air temperature sensors are also used in Automatic Climate Control systems. One or more air temperature sensors are used to monitor the temperature of the air inside the passenger compartment, as well as the outside air temperature. The climate control system usually has its own separate outside air temperature sensor located outside the engine compartment so engine heat does not affect it. The outside air temperature sensor will usually be mounted behind the grille or in the cowl area at the base of the windshield.). Most of these sensors work exactly the same as the engine air temperature sensor. But some use an infrared sensor to monitor the body temperature of the vehicle’s occupants.

CAUSES OF FAILURE

An air temperature sensor can sometimes be damaged by

backfiring in the intake manifold. Carbon and oil contamination inside the intake manifold can also coat the tip of the sensor, making it less responsive to sudden changes in air temperature. The air temperature sensor itself may also degrade as a result of heat or old age, causing it to respond more slowly or not at all.

Sensor problems can also be caused by poor electrical connections at the sensor. A loose or corroded wiring connector can affect the sensor’s output, as can damaged wiring in the circuit between the sensor and PCM.

DRIVEABILITY SYMPTOMS

If the intake air temperature sensor is not reading accurately, the PCM may think the air is warmer or colder than it actually is, causing it to miscalculate the air/fuel mixture. The result may be a lean or rich fuel mixture that causes driveability symptoms such as poor idle quality when cold, stumble on cold acceleration, and surging when the engine is warm.

If the engine computer uses the air temperature sensor input to turn on a cold start injector, and the sensor is not reading accurately, it may prevent the cold start injector from working causing a hard cold start condition.

A faulty air temperature sensor may also affect the operation of the ERG valve is the PCM uses air temperature to determine when the EGR valve opens (on most, it uses the coolant temperature input).

On OBD II application (1996 & newer vehicles), a faulty air temperature sensor may prevent the Evaporative (EVAP) Emissions System Monitor from completing. This can prevent a vehicle from passing a plug-in OBD II test (because all the OBD II monitors must run before it can pass the test). The EVAP monitor will only run when the outside temperature is within a certain range (not too cold and not too hot, as a rule).

A faulty air temperature sensor that is reading warmer than normal will typically cause in a lean fuel condition. This increases the risk of detonation and lean misfire (which hurts fuel economy and increases emissions).

A faulty air temperature sensor that is reading colder than normal will typically cause a rich fuel condition. This wastes fuel and also increases emissions.

Sometimes what appears to be a fuel mixture balance problem

due to a faulty air temperature sensor is actually due to

something else, like an engine vacuum leak or even a restricted catalytic converter! A severe exhaust restriction will reduce intake vacuum and airflow causing the sensor to read hotter than normal (because it is picking up heat from the engine).

DIAGNOSING THE AIR TEMPERATURE SENSOR

A faulty air temperature sensor may or may not set a code and turn on the Check Engine light. If the sensor circuit is open or shorted, it will usually set a code. But if it is only reading high or low, or is sluggish due to old age or contamination, it usually will not set a code.

A quick way to check the air temperature sensor is to use a scan tool to compare the air temperature reading to the coolant temperature reading once the engine is warm. A good air temperature sensor will usually read a few degrees cooler

than the coolant sensor.

The sensor’s resistance can also be checked with an ohmmeter.

Remove the sensor, then connect the two leads on the ohmmeter to the two pins in or on the sensor’s wiring connector plug to measure the sensor’s resistance. Measure the sensor’s resistance when it is cold. Then blow hot air at the tip of the sensor with a blow drier (never use a propane torch!) and measure the resistance again. Look for a change in the resistance reading as the sensor warms up.

No change in the sensor’s resistance reading as it heats up would tell you the sensor is bad and needs to be replaced. The sensor reading should gradually decrease if the sensor is a negative thermistor, or gradully increase if it is a positive thermistor. If the reading suddenly goes open (infinite resistance) or shorts out (little or no resistance), you have a bad sensor.

To be really accurate, you should look up the resistance specifications for the air temperature sensor, then measure the sensor’s resistance at low, mid-range and high temperatures to see if it matches the specifications. A sensor that reads within the specified range when cold, may go out of range at higher temperature, or vice versa. Such a sensor would not be accurate and should be replaced.

The resistance and/or voltage test specifications for the air temperature sensor on your engine can be found in a service manual, or by subscribing to the service information on the   vehicle manufacturers service informaTION WEBSITE or AlldataDIY.

AIR TEMERATURE SENSOR REPLACEMENT/REPAIR/ADJUSTMENT

The air temperature sensor is a solid state device so no adjustment is possible. However, it may be possible to clean a dirty sensor so that it functions normally once again provided it is still in good working condition. Contaminants can be removed from the tip of the sensor by (1) removing the sensor from the intake manifold, then (2) spraying the sensor tip with electronics cleaner. For sensors that are mounted inside a MAF sensor, the wire sensing element can also be sprayed with aerosol electronics cleaner. Do not use any other type of cleaner as it may damage the plastic housing or leave behind a chemical residue that may cause problems down the road.

If a sensor is not reading within specifications or has failed, replace it. Fortunately, most air temperature are not very expensive (typically less than $30). Dealers always charge more than aftermarket auto parts stores, so shop around and compare prices before you buy. Labor to change an air temperature sensor is usually minimal, unless the sensor is buried under a lot of other stuff that has to be removed.

When replacing the air temperature sensor, be careful not to overtighten it as this may damage the sensor housing, or the threads in a plastic intake manifold.

Wideband O2 Sensors and Air/Fuel (A/F) Sensors

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Wideband Oxygen sensors (which may also be called Wide Range Air Fuel (WRAF) sensors) and Air/Fuel (A/F) Sensors, are replacing conventional oxygen sensors in many late model vehicles.

A wideband O2 sensor or A/F sensor is essentially a smarter oxygen sensor with some additional internal circuitry that allows it to precisely determine the exact air/fuel ratio of the engine. Like an ordinary oxygen sensor, it reacts to changing oxygen levels in the exhaust. But unlike an ordinary oxygen sensor, the output signal from a wideband O2 sensor or A/F sensor does not change abruptly when the air/fuel mixture goes rich or lean. This makes it better suited to today’s low emission engines, and also for tuning performance engines.


Oxygen Sensor Outputs

An ordinary oxygen sensor is really more of a rich/lean indicator because its output voltage jumps up to 0.8 to 0.9 volts when the air/fuel mixture is rich, and drops to 0.3 volts or less when the air/fuel mixture is lean. By comparison, a wideband O2 sensor or A/F sensor provides a gradually changing current signal that corresponds to the exact air/fuel ratio.

Another difference is that the sensor’s output voltage is converted by its internal circuitry into a variable current signal that can travel in one of two directions (positive or negative). The current signal gradually increases in the positive direction when the air/fuel mixture becomes leaner. At the “stoichiometric” point when the air/fuel mixture is perfectly balanced (14.7 to 1), which is also referred to as “Lambda”, the current flow from the sensor stops and there is no current flow in either direction. And when the air/fuel ratio becomes progressively richer, the current reverses course and flows in the negative direction.

The PCM sends a control reference voltage (typically 3.3 volts on Toyota A/F sensor applications, 2.6 volts on Bosch and GM wideband sensors) to the sensor through one pair of wires, and monitors the sensor’s output current through a second set of wires. The sensor’s output signal is then processed by the PCM, and can be read on a scan tool as the air/fuel ratio, a fuel trim value and/or a voltage value depending on the application and the display capabilities of the scan tool.

For applications that display a voltage value, anything less than the reference voltage indicate a rich air/fuel ratio while voltages above the reference voltage indicates a lean air/fuel ratio. On some of the early Toyota OBD II applications, the PCM converts the A/F sensor voltage to look like that of an ordinary oxygen sensor (this was done to comply with the display requirements of early OBD II regulations).

How a wideband O2 Sensor Works

Internally, wideband O2 sensors and A/F sensors appear to be similar to conventional zirconia planar oxygen sensors. There is a flat ceramic strip inside the protective metal nose cone on the end of the sensor. The ceramic strip is actually a dual sensing element that combines a “Nerst effect” oxygen pump and “diffusion gap” with the oxygen sensing element. All three are laminated on the same strip of ceramic.

Exhaust gas enters the sensor through vents or holes in the metal shroud over the tip of the sensor and reacts with the dual sensor element. Oxygen diffuses through the ceramic substrate on the sensor element. The reaction causes the Nerst cell to generate a voltage just like an ordinary oxygen sensor. The oxygen pump compares the change in voltage to the control voltage from the PCM, and balances one against the other to maintain an internal oxygen balance. This alters the current flow through the sensor creating a positive or negative current signal that indicates the exact air/fuel ratio of the engine.

The current flow is not much, usually only about 0.020 amps or less. The PCM then converts the sensor’s analog current output into a voltage signal that can then be read on your scan tool.

What’s the difference between a wideband O2 sensor and an A/F sensor? Wideband 2 sensors typically have 5 wires while most A/F sensors have 4 wires.

O2 SENSOR HEATER CIRCUIT

Like ordinary oxygen sensors, wideband O2 sensors and A/F sensors also have an internal heater circuit to help them reach operating temperature quickly. To work properly, wideband and A/F sensors require a higher operating temperature: 1292 to 1472 degrees F versus about 600 degrees F for ordinary oxygen sensors. Consequently, if the heater circuit fails, the sensor may not put out a reliable signal.

The heater circuit is energized through a relay, which turns on when the engine is cranked and the fuel injection relay is energized. The heater circuit can pull up to 8 amps on some engines, and is usually pulse width modulated (PWM) to vary the amount of heat depending on engine temperature (this also prevents the heater from getting too hot and burning out). When the engine is cold, the duty ratio (on time) of the heater circuit will be higher than when the engine is hot. A failure in the heater circuit will usually turn on the Malfunction Indicator Lamp (MIL) and set a P0125 diagnostic trouble code (DTC).

 

Oxygen Sensor Problems

Like ordinary oxygen sensors, wideband O2 sensors and A/F sensors are vulnerable to contamination and aging. They can become sluggish and slow to respond to changes in the air/fuel mixture as contaminants build up on the sensor element. Contaminants include phosphorus from motor oil (from worn valve guides and rings), silicates from antifreeze (leaky head gasket or intake gaskets, or cracks in the combustion chamber that leak coolant), and even sulfur and other additives in gasoline. The sensors are designed to last upwards of 200,000 km but may not go the distance if the engine burns oil, develops an internal coolant leak or gets some bad gas.

Wideband 2 sensors and A/F sensors can also be fooled by air leaks in the exhaust system (leaky exhaust manifold gaskets) or compression problems (such as leaky or burned exhaust valves) that allow unburned air to pass through the engine and enter the exhaust.

Wideband A/F Sensor Diagnostics

As a rule, the OBD II system will detect any problems that affect the operation of the oxygen or A/F sensors and set a DTC that corresponds to the type of fault. Generic OBD II codes that indicate a fault in the O2 or A/F sensor heater circuit include: P0036, P0037, P0038, P0042, P0043, P0044, P0050, P0051, P0052, P0056, P0057, P0058, P0062, P0063, P0064.

Codes that indicate a possible fault in the oxygen sensor itself include any code from P0130 to P0167. There may be additional OEM “enhanced “P1” codes that will vary depending on the year, make and model of the vehicle.

The symptoms of a bad wideband O2 sensor or A/F sensor are essentially the same as those of a conventional oxygen sensor: Engine running rich, poor fuel economy and/or an emission failure due to higher than normal levels of carbon monoxide (CO) in the exhaust.

Possible causes in addition to the sensor itself having failed include bad wiring connections or a faulty heater circuit relay (if there are heater codes), or a wiring fault, leaky exhaust manifold gasket or leaky exhaust valves if there are sensor codes indicating a lean fuel condition.

What to Check: How the sensor responds to changes in the air/fuel ratio. Plug a scan tool into the vehicle diagnostic connector, start the engine and create a momentary change in the air/fuel radio by snapping the throttle or feeding propane into the throttle body. Look for a response from the wideband O2 sensor or A/F sensor. No change in the indicated air/fuel ratio, Lambda value, sensor voltage value or short term fuel trim number would indicate a bad sensor that needs to be replaced.

Other scan tool PIDS to look at include the OBD II oxygen heater monitor status, OBD II oxygen sensor monitor status, loop status and coolant temperature. The status of the monitors will tell you if the OBD II system has run its self-checks on the sensor. The loop status will tell you if the PCM is using the wideband O2 or A/F sensor’s input to control the air/fuel ratio. If the system remains in open loop once the engine is warm, check for a possible faulty coolant sensor.

Another way to check the output of a wideband O2 sensor or A/F sensor is to connect a digital voltmeter or graphing multimeter in series with the sensor’s voltage reference line (refer to a wiring diagram for the proper connection). Connect the black negative lead to the sensor end of the reference wire, and the red positive lead to the PCM end of the wire. The meter should then show an increase i9e8188db74cc41da7fa9c8a38232b9a2 voltage) if the air/fuel mixture is lean, or a drop in voltage (below the reference voltage) if the mixture is rich.

The output of a wideband O2 sensor or A/F sensor can also be observed on a digital storage oscilloscope by connecting one lead to the reference circuit and the other to the sensor control circuit. This will generate a waveform that changes with the air/fuel ratio. The scope can also be connected to the sensor’s heater wires to check the duty cycle of the heater circuit. You should see a square wave pattern and a decrease in the duty cycle as the engine warms up.

Wideband Oxygen Sensor Tech Tips

* On Honda 5-wire “Lean Air Fuel” (LAF) sensors, the 8-pin connector pin for the sensor contains a special “calibration” resistor. The value of the resistor can be determined by measuring between terminals 3 and 4 with an ohmmeter, and will be 2.4K ohms, 10K ohms or 15k ohms depending on the application. If the connector is damaged and must be replaced, the replacement must have the same value as the original. The reference voltage from the PCM to the sensor on these engines is 2.7 volts.

* Saturn also uses a special trim resistor in their wideband O2 sensor connector (pins 1 & 6). The resistor is typically 30 to 300 ohms. The PCM supplied reference voltage is 2.4 to 2.6 volts.

* If a O2 sensor, wideband O2 sensor or A/F sensor has failed because of coolant contamination, do not replace the sensor until the leaky head gasket or cylinder head has been replaced. The new sensor will soon fail unless the coolant leak is fixed.

* Some early Toyota applications with A/F sensors provide a “simulated” O2 sensor voltage to be displayed on a scan tool. The actual value was divided by 5 to comply with early OBD II regulations. Those regulations have since been revised, but be aware if you get a “funky” display on your scan tool

Improved Mosfet switching circuit for powering Hydrogen fuel system

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Product of           https://www.hydrogenfuelsystems.com.au

 

Improved Mosfet switching circuit for powering Hydrogen fuel system

MOSFET switch for hydrogen generator systems

A Simple Switch

MOSFETs are really easy to “saturate”, which just means that they are fully open, and they are dead reliable for very fast switching between their saturation and cut-off regions (fully on and fully off regions). This makes them wonderful switches, especially for high power applications like motors, lamps, etc. In most cases, you can use the same power supply that you are using for your high power device to operate the MOSFET as well, using a mechanical switch to apply the gate voltage. The image below shows exactly that type of application

Build:
For this project wewill use N channel MOSFET only

Place the N-ch MOSFET on the board. Connect the 1kΩ resistor between the gate and GND. Connect the switch between the gate and +9V. Place the 220Ω resistor and LED in series between +9V and the drain. Tie the source pin directly to GND. See image below.

Push the button and the LED should light up. The 1kΩ resistor acts as a pull-down resistor, keeping the voltage at the gate at the same potential as the negative battery terminal until the button is pushed. This puts a positive voltage at the gate, opening the channel between the drain and source pins and allowing current to flow through the LED. Note that the gate voltage is +9V and there are no negative side effects.

 

Step 3: Motor Drivers  – not applicable or necessary configuration for Hydrogen electrolysis circuits

Improved Mosfet switching circuit

Building off of Step 1, we can use the ZVN as a DC motor driver. To avoid over-current damage to the ZVN, I’m using a small 6V DC hobby motor, much like the kind you find inside of small hobby servos. With a higher current N-ch MOSFET, you can drive larger motors with larger current needs.

Looking at the schematic below you’ll see two diodes placed backward (reverse biased) across the motor contacts and across the MOSFET drain/source pins. Any electrical component that has a coil in it (inductors, relays, solenoids, motors, etc.) can generate a very large voltage spike in the reverse direction when it is turned off. (This is a common problem in airsoft, and it can lead to premature wear on the trigger contacts that turn on the motor. An easy fix for this is to add an “airsoft MOSFET”, and this is a similar example. It should be noted that the parts used here are nowhere near capable of handling the voltage/current needs of an airsoft motor, so don’t use this specific example.) The diodes give that spike a place to go so that the components are not damaged.

Improved Mosfet switching circuit

Build: Place the ZVN on the board. Connect the 1kΩ resistor between the gate and GND. Connect the switch between +6V and the gate. Connect the source to GND. Connect the drain to the negative motor lead. Tie the positive motor lead to +6V. Place one diode between the drain and source pins, with the stripe on the diode facing the drain pin. Put the other diode across the motor leads, with the stripe toward +6V. See image below.

Once everything is connected, double check it. And again. It’s really easy to get things switched and even though it probably won’t matter with this circuit, it’s a good habit to already have when it does matter. Then push the button and your motor should run in one direction.

Improved Mosfet switching circuit

Conclusion

As you can see MOSFETs are extremely useful. They are arguably the most important electronic component in use today when you look at how much we rely on them for our everyday electronic devices. There isn’t a day that goes by that you don’t use several million transistors just to do something simple, like look at what time it is. Or make your coffee, check your email, watch a movie, listen to music, or read this I’ble.

You may have noticed that there is no mention of MOSFETs as amplifiers here. I did that on purpose, but that isn’t to say that they can’t be used as such. My experience has been that analog signal amplification duties are best handled by BJTs, and fast, high current switching is best done by MOSFETs. I realize that is a generalization, as there are plenty of examples for both transistor types working both ways very well. I encourage you to do the research yourself if you wish to learn more on those applications.

 

Improved power supplies

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Improved power supplies

Have been doing a many hours R and D on development of a new improved power supply for hydrogen fuels systems.  The Issue I have experienced is the excessive wastage of electrical energy in operating a power supply originally designed to power DC motors , that have  an excessive amount of electrical circuitry whose only function is to prevent back voltage that reduces the efficiency and Power output of an inductive DC motor circuit.

Improved power supplies

There are many potential sites available online , both on you tube and on research URL sites that describe effective DC control / switching circuits that use MOSFET components .   Many of these are still biased to DC motor circuits but we have managed to modify several simple circuits that use Banks of MOSFET’s connected in parallel with biasing 10k pots , to control / switch the current on in these Electrolysis circuits , without wasting excessive voltage on the internal circuitry.

After many many many hours of operation and testing of these switching Power supply circuits we will now get them made professionally and install them in the latest models of hydrogen fuel systems.

There are several advantages of the new circuitry

  1. All available battery voltage / electrical energy is available for the  electrolysis cells
  2. No overvoltage is wqsted through the PWM heat sink , thus preventing problem s of electronic thermal runaway problem
  3. The MOSFET is a VOLTAGE CONTROLLED DEVICE rather than a current controlled device as in transistors ad IC’s thus  leaving little chance of thermal runaway damage and making it easier to set, control and use
  4. Less parts , simpler construction and less maintenance problems
  5. Truly able to use as a set and forget technology
  6. Cheaper to manufacture and cheaper to repair if so needed

Improved power supplies

Recommended Mosfets for these systems are the 10 amp 12 volt MOSFETS, – 5 OF THEM CONNECTED IN PARALLEL.  Providing control for up to 50 amp of current .

Once the systems are manufactured professionally by our fabricator, they will be mounted into a protective ventilated cage  onto a designed circuitboard

Photos will follow soon  and schematics will be available on this site

Hydrogen systems for Diesel Engines University Research

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Hydrogen fuel systems

Hydrogen systems for Diesel Engines University Research

Hydrogen fuel systems. Today October 3 2017, On Holidays at Ramada resort, Dunsborough WA,  I was conducting research online for the following research topic

“hydrogen systems for diesel engines university research”

I was able to find many authentic research articles including ones from a group from with URL address

www.sciencedirect.com/science/article/pii/S1876610213000040

Science direct is a University research URL requiring membership.,  However there are many reference links showing authors and published papers which can be easily located online through a google search

One such paper I found to start with was headed “Combustion characteristics of diesel-hydrogen dual fuel engine at low load” and was located at the URL1-s2.0-S1876610213000040-main hydrogen dual fuel

Which I downloaded and have copied onto this post

The research report was well written and a clear concise document providing proof of the use of Hydrogen as a duel fuel for use with diesel

Hydrogen fuel systems

“In the present study, hydrogen utilization as diesel engine fuel at low load operation was investigated. Hydrogen cannot be used directly in a diesel engine due to its auto ignition temperature higher than that of diesel fuel. One alternative method is to use hydrogen in enrichment or induction. To investigate the combustion characteristics of this dual fuel engine, a single cylinder diesel research engine was converted to utilize hydrogen as fuel. Hydrogen was introduced to the intake manifold using a mixer before entering the combustion chamber. The engine was run at a constant speed of 2000 rpm and 10 Nm load. Hydrogen was introduced at the flow rate of 21.4, 36.2, and 49.6 liter/minute. Specific energy consumption, indicated efficiency, and cylinder pressure were investigated. At this low load, the hydrogen enrichment reduced the cylinder peak pressure and the engine efficiency.”

Hydrogen fuel systems

“The advantages of using hydrogen as fuel for internal combustion engine is among other a long-term renewable and less polluting fuel, non-toxic, odorless, and has wide range flammability. Other hydrogen properties that would be a challenge to solve when using it for internal combustion engine fuel, i.e.: low ignition energy, small quenching distance, and low density”

Hydrogen fuel systems

“5. Conclusion Experiments and simulation works were conducted on DI diesel engine with hydrogen in the dual fuel mode. Under constant load and speed engine operation, hydrogen induction into the intake manifold 10 W.B. Santoso et al. / Energy Procedia 32 ( 2013 ) 3 – 10 reduces the diesel fuel consumption. Diesel reduction of 50, 90, and 97% was achieved during the investigation. These relatively high percentages of hydrogen fuel are detrimental to the engine performance in terms of energy consumption and efficiency. An increasing hydrogen flow rate at the low load operation results in a higher SEC. It means that more fuel is necessary to produce the same power output. At this low load operation, the efficiency decreases with hydrogen enrichment. This condition affects the values of SEC. Measurement of in-cylinder pressure was carried out to investigate the combustion process inside the combustion chamber. Hydrogen enrichment reduced the peak pressure and retarded the start of combustion. CFD simulation reveals that hydrogen enrichment in such a high percentage resulted in slower reaction progress due to lower combustion rate of reaction. Temperature distributions along the cut plane at the spray axis showed the progress of the combustion processes. Acknowledgment The authors wish to thank Universiti Malaysia Pahang for supporting this research under GRS 100303. Fully support from LIPI by providing the experiment and simulation facilities are grateful acknowledged.

References [1] Fulton J, Lynch F, Marmora R. Hydrogen for reducing emissions from alternative fuel vehicle. SAE Technical Paper 1993;No. 931813.

[2] Saravanan N, Nagarajan G. An experimental investigation of hydrogen-enriched air induction in a diesel engine system. Int J Hydrogen Energy. 2008; 33:1769-1775

. [3] Pundir BP, Kumar R. Combustion and smoke emission studies on a hydrogen fuel supplemented DI diesel engine. SAE Technical Paper. 2007;No. 2007-01-0055.

[4] Saravanan N, Nagarajan G, Kalaiselvan KM, Dhanasekaran C. An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique. Renewable Energy. 2008;33:422-427.

[5] McWilliam L, Megaritis T, Zhao H. Experimental investigation of the effects of combined hydrogen and diesel combustion on the emissions of a HSDI diesel engine. SAE Technical Paper. 2008;No. 2008-01-1787.

[6] Saravanan N, Nagarajan G, Dhanasekaran C, Kalaiselvan KM. Experimental investigation of hydrogen port fuel injection in DI diesel engine. Int J Hydrogen Energy. 2007;32:4071-4080.

[7] Lilik GK, Zhang H, Herreros JM, Haworth DC, Boehman AL. Hydrogen assisted diesel combustion. Int J Hydrogen Energy. 2010;35:4382-4398.

[8] Saravanan N, Nagarajan G, Dhanasekaran C, Kalaiselvan KM. Experimental investigation of hydrogen fuel injection in DI dual fuel diesel engine. SAE Technical Paper. 2007;No. 2007-01-1465.

[9] Saravanan N, Nagarajan G. An experimental investigation on a diesel engine with hydrogen fuel injection in intake manifold. SAE Technical Paper. 2008;No. 2008-01-1784.

[10] Saravanan N, Nagarajan G. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source. Applied Energy. 2010;87:2218-2229.

[11] Bose PK, Maji D. An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation. Int J Hydrogen Energy. 2009;34:4847- 4854.

[12] Szwaja S, Grab-Rogalinski K. Hydrogen combustion in a compression ignition diesel engine. Int J Hydrogen Energy. 2009;34:4413-4421

Hydrogen Generator systems for heavy duty trucking/mining

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Hydrogen Generator systems for heavy duty trucking

Hydrogen Generator.  Recently HFS were commissioned By Coogee chemicals Pty Ltd  , west Australia to produce a new configuration of Hydrogen fuel systems to save fuel on their Cummins Powered Kenworth trucking.

The New configuration was  mounted into a stainless steel enclosure box with stainless steel piping and stainless steel recycling container which is used to  collect the hydrogen gas and pass it through the engine.

Hydrogen Generator

The new configuration is designed to  be rhobust and capable of handling extreme conditions or rough driving terrain , high temperature .  The enclosure box is made from stainless steel 316 and 2.5 mm thick material – easily able to handle reasonable impact loads .  The Pumping system is 12V- 24  V  with a pressure head od 8 m and only used for mixing the solution.

A digital electronic fuel enhancer module is used to adjust the sensor signals from the 1. Manifold air pressure sensor,  2, Coolant temperature  sensor and 3. Air intake temperature sensor  –  so as  to modify the engine  fuel map  save fuel  and increase  engine power and torque

The aim of the EFIE is to reduce  MAP settings by 10%,   increase the AIT settings by 50celcius and CTS settings by 7 celcius.

Photos below show the position of the hydrogen fuel system and efie.

Servicing HHO System for use on cars, trucks generators and boats/ shipping

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Following are the instructions for Servicing HHO System  as used by trucks and cars using the HydrogenFuelSystem pty ltd system for hydrogen Generation

  1. One litre of water should last 15 hour s of continuous operation.
  2. Add Distilled water to recycling container to bring it to the full mark –8cm from top of tank.
  3. After 3 months of operation, the liquid should be flushed out and drained. New/Fresh solution should be used.
  4. For trucks and other engines using a 24 volt and 30 amp, supplying one litre of water should last between 5 to 6 hours of continuous operation.
  5. Concentration of 11 grams per litre equates a pH of 13.6. This is the ideal concentration of the solution in the system
  6. In order to make up the solution the ideal way is to make a concentrated solution of potassium hydroxide by dissolving 50 grams in 150 mls of water.
  7. With the system running , slowly add small amounts of the concentrated solution to the recycling tank until the current flow in the system measures 20 amp. This is a time consuming process and time shhold be allowed to mix the potassium hyrdroxide solution thoroughly before adding more electrolyte .  The complete operation should take 5 min to set up. Unused Potassium Hydroxide should be stored and disposed of safely through  your local city AUTHORITY.  Do not pour  it into nito the  garden  or down the drain as is is very poisonous chemical and pollution should be avoided.  iF YOU only make up small of electrolyte is can safely be kept for the next cycle when you flush out the system and make a fresh electrolyte .
  8. Once operational only water needs to be added to fill the reservoir up to the level of 8 cm from the top of the recycling container

How to avoid Poor terminal connections fault in Hydrogen Generator systems – June 2017

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Product of           https://www.hydrogenfuelsystems.com.au

How to avoid Poor terminal connections fault.      Last week  (June 2017) I checked the operation of My Hydrogen generator system and noticed that one of the terminals in the engine bay , that was delivering current through a relay unit  to the Hydrogen system , had been affected by heat such that the plastic insulation was deformed  as shown in the photo 1 below

I checked the temperature of every terminal  in the systems as it was operating and noticed that the suspect terminal was operating  at 60 celcius , while all other terminals were operating at 32 celcius.

Apart from the deformed plastic the suspect terminal looked fine and was conducting current through the relay.

I replaced the terminal and sPrayed it with lanolin lubricant to stop any future oxidation of the copper leads.

I have operated the system for the past 7 days and have consistently shown an increase in fuel economy of 1.7 km/litre, so that I am now achieving 19.5 km/litre.

I tested the terminal with a multimeter and noticed only a small increase in terminal resistance in low current flow conditions , but also noted that the internal resistance increases by over a 200 mili ohm when operating at 12 volt and 20 amp

This equates to a waste of electrical Power of P=I x I x R  =  20 x 20 x 0.2  = 80 watts  (80 joules per second)

The input Power = V x I = 12 x 20 = 240 watt (240 joules per second)

Wasting 80 watt  for a  total of 240 watt input is  a massive 33%

I recommend testing the terminals with Infra red laser thermometers , to check the condtion of the electrical terminals and  identify faulty terminals which could adversely affect the operation of your Hydrogen generator system.

Moral to the story is it is crucial to check and ensure that all terminals are in good condition  – and preferable treated with a liquid such as with  lanolin corrosion inhibitor.. Alternately with oxidation any electrolysis unit will generate heat rather that hydrogen

https@www.hydrogenfuelsystems.com.au

glknox11@live.com

gavan

0403177183

BSc, BSc, BEng, BEd

Can Hydrogen Injection save the diesel engine technology and save fuel while increasing power output

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Product of           https://www.hydrogenfuelsystems.com.au

Can Hydrogen Injection save the diesel engine?

The greatest automotive story this century has been the “Dieselgate” conspiracy. Not only has it brought down the established regime at VW, but it’s shaken the very foundation of diesel powered transportation.

VW has already started rolling out a fix in Europe, which many of us are sceptical about, but are still “negotiating” with legislators in North America. This delay has opened the door for many lesser known technologies to offer a solution; some of them snake oil, some showing real potential.

Image Credit: www.drive.com.au   —– VW emissions  fix

One such technology is hydrogen injection, also commonly known as HHO.

Forty years of hydrogen injection.

Hydrogen injection has been around since the 1970s and works by injecting hydrogen into a modified, internal combustion engine, which allows the engine to burn cleaner with more power and lower emissions. Hydrogen is injected into the air prior to entering the combustion chamber. Hydrogen burns 10 times as fast as diesel and, when mixed with the diesel in the combustion chamber, accelerates the rate at which the diesel burns.

Don’t confuse hydrogen injection with hydrogen fuel cell technology, they’re vastly different:

A hydrogen fuel cell electric vehicle is powered by a group of individual fuel cells, known as a fuel cell stack. The electricity generated by the fuel cell stack powers the electric motor that propels the vehicle.
Each fuel cell is an anode, a cathode and a proton exchange membrane sandwiched in between. Hydrogen, from a tank onboard the vehicle, enters into the anode side of the fuel cell. Oxygen, pulled from the air, enters the cathode side. As the hydrogen molecule encounters the membrane, a catalyst forces it to split into electron and proton. The proton moves through the fuel cell stack and the electron follows an external circuit, delivering current to the electric motor and other vehicle components. At the cathode side, the proton and electron join again, and then combine with oxygen to form the vehicle’s only tailpipe emission, water.

Image Credit: Hydrogen Injection Technologies

  • Hydrogen injection systems, such as the aftermarket supplemental hydrogen on-demand system developed by Hydrogen Injection Technologies(HIT), utilize electrolysis to produce hydrogen on-demand. This hydrogen gas is synthesized from the atmosphere and released into the air-intake of any fuel based internal combustion engine. (The system is capable of NRE retrofit to any industrial engine, car, boat, RV, generator etc. up to 20 litres capacity)

Over the past 40 years several tests have been performed to investigate the impact of hydrogen injection on performance and emissions. One such test recently published by the SAE, a Direct Injection (DI) diesel engine was tested for its performance and emissions in dual-fuel (hydrogen-diesel) mode.

Using an Electronic Control Unit (ECU) controlled Electronic Gas Injector, the injection timing and duration were varied on a single cylinder, KIRLOSKAR AV1, DI Diesel. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles.

The injection timing of the diesel was fixed at 23° BTDC. By using hydrogen and diesel as a fuel emissions of Hydro Carbon (HC), Carbon monoxide (CO) and Oxides of Nitrogen (NOx) decrease without exhausting more smoke.
The maximum brake thermal efficiency obtained was about 30% at full load for the optimized injection timing of 5° after Gas Exchange Top Dead Center (AGTDC) and for an injection duration of 90°-crank angle. The NOx emission tends to reduce to a lower value of 888 parts per million (ppm) at full-load condition for the optimized injection timing of 5° AGTDC and with an injection duration of 90° compared to neat diesel fuel operation.

Of interest in the VW saga the hydrogen supplemental fuel system developed by Hydrogen Injection Technologies has been field and lab tested (by CEE, Inc. a CARB certified laboratory) as a hardware only solution reducing NOx by over 50%.

Unlike hydrogen fuel cells HHO’s do not require a bulky pressure vessel to store the gas, as it’s a low pressure system that generates hydrogen through electrolysis of water.

As a retrofit it’s legal to run a Hydrogen Cell Generator (also called a Hydrogen Booster cell) to add HHO to the air intake, which can achieve 10% to 30% improvement in fuel consumption (Claimed).

According to Bob Boyce, the original H2O booster cell maker, the efficacy of the system relies on generating quality Hydroxy Gas. This requires a higher spin state of HHO, close to the level of deuterium to achieve consistent fuel consumption gains, and cells that can run 24/7 without heating up. Significant gains are achieved when the HHO bonds to hydro-carbon molecules, thereby completing the burn.

Moving hydrogen generation forward.

In 2014 scientists at Stanford University developed a process using a dry cell 1.5-volt battery to split water into hydrogen and oxygen at room temperature, potentially providing a low-cost method to power fuel cells in zero-emissions vehicles and buildings.

The water splitter is made from the relatively cheap and abundant metals nickel and iron. It works by sending an electric current from a single-cell AAA battery through two electrodes.

According to chemistry professor and lead researcher Hongjie Dai: “This is the first time anyone has used non-precious metal catalysts to split water at a voltage that low.” “It’s quite remarkable, because normally you need expensive metals like platinum or iridium to achieve that voltage.”

Fuel cell vehicles have been widely criticized for their high cost, the lack of infrastructure around their fuel delivery, and their low energy efficiency after accounting for the effort it takes to produce compressed hydrogen (often involving large industrial plants that use an energy-intensive process that combines steam and natural gas).

“It’s been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability,” Dai explains. “When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise.”

The nickel-metal/nickel-oxide catalyst, discovered by Stanford graduate student Ming Gong, also requires significantly lower voltages to split water when compared to pure nickel or pure nickel oxide. This new technique is not quite ready for commercial production, though.

“The electrodes are fairly stable, but they do slowly decay over time,” Gong says. “The current device would probably run for days, but weeks or months would be preferable. That goal is achievable based on my most recent results.”
The next step is to improve that decay rate and to test a version that runs on electricity produced by solar energy instead of the AAA battery.

Benefits of HHO

In 2013, after eight years of research, Mark Dansie published an article on www.revolution-green.com where he outlined the following benefits:

  1. HHO reduces carbon monoxide up to 90%. Carbon monoxide is a fuel and HHO acts a catalyst to promote its combustion
    2. HHO decreases hydrocarbons by about 10% to 90%
    3. HHO drops particulate levels, especially organic particulates by 10% to 70%
    4. HHO will reduce EGT (Exhaust gas temperature) from 50 to 150 degree F (depending on engine load)
    5. HHO also decreases mechanical noise (was noticeable in every lab test by all the technicians but not measured)
    6. HHO doesn’t always reduce NOx and in some circumstances increase it (water injection reduces it really well)
    7. Only a small, and very specific amount of HHO is required to achieve significant results. If too much is supplied engine efficiency will be reduced if using electrolysis to produce the HHO
    8. Horsepower is increased between 3% and 12% depending on the engine and Cetane grade of diesel used.
    9. HHO improved and cleaned heavily carbonized engines. Often after weeks of running, fuel efficiency increased through this cleaning process. In one case an improvement of 13% was obtained and when the hydrogen unit was removed it still retained an 11% improvement.
    10. HHO works best at elevated engine speeds. There were no benefits at idling speed.

Although empirical results indicate that on-demand hydrogen injection technology does improve efficiency and reduce emissions, hard test data under recognized European and North American automotive standards is hard to find.

I for one would like to see before-and-after tests conducted under harmonized driving standards, to substantiate the gains claimed by Dansie, Hydrogen Injection Technologies, and other interested parties.

The timing is right! With France reducing incentives for purchasing new diesel vehicles, Euro6c and real world testing looming and VW’s predicament in America, Diesel engines need a new approach to cleaning up diesel exhaust gas emissions to survive the onslaught.

 

by peter els on May 19, 2016 in Emissions control and regulation 2

A Digital EFIE operation and How it works to adjust the fuel map to run hydrogen on engines

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Product of           https://www.hydrogenfuelsystems.com.au

Digital EFIE operation

Digital EFIE operation – Previous EFIE Designs First, lets have a look at how oxygen sensors work. Have a look at Figure A below. Here we have a graph that is a representation of the voltage output of a typical oxygen sensor while the engine is running. Note, that this is only an approximation of a real voltage graph. A real graph would be much more jagged and would not be so regular as this one. But I’m using this graph to make it easier to visualize the concept of what the sensor is doing.

Narrow band oxygen sensors don’t tell the ECU what the air/fuel ratio is. They only tell if the mixture is rich or lean. The line that is marked “.45” volts denotes the make/break point for the sensor’s voltage output. Any voltages that are higher than .45 volts is considered to be rich, and any voltages that are less than .45 volts is considered to be lean. When the sensor produces .45 volts, that is considered to be the correct air/fuel mixture which happens to be 14.7 to 1, air to fuel (by weight). The trouble with narrow band sensors is that they can’t tell the ECU how rich or how lean the mix is. They only tell the ECU “rich” or “lean”. Therefore, in normal operation, they are constantly changing voltages similarly to the graph in Figure A.

Now look at Figure B. The blue line in this graph represents how an EFIE changes the voltage graph of the sensor. As the sensor produces its voltages (as represented by the red graph), the EFIE adds additional voltage. We are showing an EFIE set to 350 millivolts (.35 volts). Therefore the output of the EFIE that goes to the computer will be the voltages in the blue line on the graph. Because higher voltages mean a richer mix to the ECU, the ECU will then lean the mix when it “sees” these “richer” mixture signals coming from the oxygen sensor.

Almost all EFIE designs that are in use today work like the above graph, by adding a voltage to the output of the oxygen sensor. While this approach does work, and has been the only solution available for many years, it has 2 problems that make it not the ideal design.

1. There is a definite limit to the amount of voltage you can add. Notice that if we added .5 volts in the above graph, that the blue line would never dip below the .45 volt line. This is an illegal condition and the ECU will quickly stop using the oxygen sensor if it never sees the voltage transitioning from rich to lean. In actual fact many ECUs need to see voltages lower than .45 volts before it will consider that the mix is lean, and so often you can’t set an EFIE higher than 250 millivolts or so without throwing engine error codes.

2. It takes a relatively large change in the voltage to make a small change in the air/fuel ratio. This wouldn’t be a problem in itself, but coupled with the fact that we can only add a limited amount of voltage, this causes an end result of a small change in air/fuel ratio.

There is one other approach in EFIE design in use today, and that is to use an amplifier. Instead of adding voltage to the sensor’s output, EFIEs of this type will amplify the signal. This, in effect, multiplies the signal. This is a better approach in that the lower voltages are not increased as much as the higher voltages, and you should be able to shift the air/fuel ratio further than with a voltage “adder”. However, it is still limited to the amount it can shift the voltage before all voltages are higher than .45 volts. Also, the amplified voltages at the top of the graph can get quite high, possibly high enough that it will set off alarms in the ECU.

Enter the Digital Narrow Band EFIE

There are other EFIE designs being marketed as “digital”. In each case, as of this writing, the only thing digital about them is the pot used to control the EFIE. It’s a digital pot and will have one of 64 or 128 resistance values, or possibly more depending on the resistor chip design. While this is cool, it makes no difference in the operation of the EFIE. It will still be operating like one of those described in the section above.

Our new Digital Narrow Band EFIE operates completely differently from any other EFIE made. Our new EFIE is called digital, because it’s output is either on or off. Or in other words is either high or low. Or to put in terms the ECU will understand, the output will be either rich or lean. Or to put it in terms of voltage, the output is either going to be .100 volts or .900 volts. This is perfectly acceptable to the ECU and tells it exactly what we want it to see. But because it’s output is only one of 2 states, we rightfully call this device a “digital” device.

So how do we know when to switch from the high state to the low state? We have a comparator in the EFIE that “decides” when to switch states. If the EFIE were to be set so that there was no change in air/fuel ratio, the comparator would be set to .45 volts. This would mean that if the voltage coming in from the sensor were below .45 volts, the output would be low, and likewise if the voltage coming in from the sensor were above .45 volts, the output would be set to high. This would cause a flat response in the ECU where it would provide the same air/fuel ratio as if the EFIE were not involved.

To lower the air/fuel ratio we need to make the mix appear richer. In order to do this, we make the EFIE transition to a high output even though the input is below .45 volts. In other words, instead of using .45 volts as the switching threshold, we use .20 volts (see Figure C).

 

By adjusting the pot

By adjusting the pot on our new EFIE, we are adjusting at which voltage the comparator will use to determine if the output should be set to high or low. In the graph below, we show 2 comparator voltages for comparison. At .45 volts, we can see that the output will be high about 1/2 of the time. This is the same as it would be without the EFIE. Now notice the line at .2 volts. By setting the EFIE’s comparator at .2 volts, the EFIE output will be low for about 30% of the time and high about 70% of the time. This will make the air/fuel mix look richer than it is, and the ECU will respond by leaning out the mix.

Note that .2 volts is probably too low for your vehicle. You will probably not need to set it this low. We only set it here to make it easy to see the principal involved with our new Digital EFIE. An actual setting would probably be closer to .300 – .325 volts.

Note: When downstream sensors need to be treated, do not use this device. Use an older style, voltage adding type of EFIE. The reason for this is that we’re not certain how the downstream sensor information is used by the ECU. In some cases, we have read the voltages from downstream sensors and they don’t jump up and down as shown in the graphs above. We’ve seen them just float around in the .2 to .3 volt range, not changing much. This is not the behavior that the Digital EFIE was designed for. It may work fine. But we prefer that the ECU just see the same behavior, but shifted up a bit, the way a voltage adding type of EFIE will do. Any of our Narrow Band EFIEs that aren’t labeled “Digital” will work for this application.

Using this device, some people have been able to lean the mix to the point that the engine will die. However, in some cases, it is still necessary to do other treatments to get the leaning results needed. For instance many ECUs use the downstream sensors as part of the air/fuel calcs, and many more will use the downstream sensors to verify the upstream sensors and throw odd engine errors. In these cases, downstream EFIEs are needed to get the needed results. That’s why we created the Digital EFIE & MAP/MAF Combo It has 2 digital EFIEs for the upstream sensors and 2 analog EFIEs for the downstream sensors. This will give you the optimum treatment for each sensor, and is the most powerful solution we’ve seen yet for optimizing your engine for use with HHO or other fuel combustion enhancement technologies.

MAP Sensor, MAF sensor , and Controlling Fuel usage – Important

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

 

Product of           https://www.hydrogenfuelsystems.com.au

MAP sensor MAF sensor and hydrogen fuel systems is the essential information we are attempting to explain in this passage.  

MAF sensor and fuel usage   How to control Fuel input into modern vehicles with CPM.   MAF sensor , MAP Sensor and Controlling Fuel usage – Hydrogen Fuel Systems

Slug preview:hydrogenfuelsystems.com.au/maf-sensor-map-sensor-controlling-fuel-usage/

Meta description preview:MAF sensor and fuel usage MAP and MAF sensor adjustment and maximizing fuel efficiency and power for diesel fueled , gasoline / petrol fueled and LPG fueled

 

MAP/MAF sensor and hydrogen fuel systems is the essential information we are attempting to explain in this passage.  The Tuning of any petrol fuelled engine relies on the tuning of the following sensors so as to attain a Stoichiometric ratio of 14.7:1.  This is the ratio of the mass of  air injected to  the mass of the fuel injected at STP.  Modern computer fuel injected engines aim to maintain this AFR ratio and monitor several sensors which signal the Engine ECU/PCM to maintain this  ratio.  These sensors are the

  1. mass air flow sensor (MAF),
  2. Air intake sensor
  3. Precat oxygen sensor ( also known as the AFR sensor)
  4. Precat oxygen sensor
  5. Coolant temperature sensor
  6. Manifold Air pressure sensor- (MAP) ( also known as the Boost pressure sensor).

When all sensors are in agreement with loading conditions, the ECU/PCM will fuel injection pulse length to supply sufficient fuel for the loading conditions on the engine.

The MAF sensor adjusts the fuel input measured in Grams of fuel per second.  This measurement is dependent upon the temperature of the of the input air temperature (at constant Pressure P) as with increasing temperature the volume of gas increases according the universal gas law

P.V = n.R.T

Volume of gas

Increasing the temperature (T) of the gas results in the reduction of number of moles (n) of oxygen gas, per litre of air, present for the combustion reaction.  As a result the engine ECU/PCM reduces the mass of fuel / second, injected into the engine so as to maintain its desired stoichiometric ratio of 14.7:1.    This is also be explained by the fact that Colder air is denser that warm air.

The initial Primary fuel control mechanism is dependent upon the MAF sensor and Air intake sensor , which is then adjusted and trimmed  by the MAP sensor , AFR sensor, oxygen sensor and coolant temperature sensor to attain the desired stoichiometric ratio of 14.7:1.

There are a range of MAF sensors that  are designed to measure the air intake volume.

Typically older engines use Hot wire MAF sensors that are analog  sensors and show a change in voltage across the hot wire as more air flows past the sensor. Increasing airflow reduces the temperature of the hot wire and increases its electrical resistance and thus increasing the voltage of the signal sent of the ECU/PVM.  This is a slow response system and has been replaced in modern engines by Digital systems the adjust/ increase the frequency of the signal sent to the ECU/PCM as more air flows past the MAF sensor.

In GM engines there is both a MAP sensor and a MAF sensor which control the engine ECU/PCM.  In the case of GM , Holdens , the MAF sensor is the primary sensor controlling the air/ fuel ratio of the engine and the MAP is a backup sensor on the case of failure of the MAF sensor.

In other older vehicles there is no MAF sensor and the MAP sensor is the primary control sensor  for the stoichiometric air fuel ratio control.

At Idle the air pressure sensor in  the manifold reads a low pressure ( high vacuum ) just as it is on engine deceleration .  This equates to a low loading condition where little fuel is required  and sends a low voltage signal from the MAP to the ECU/CPM.   Conversely under a large load a low pressure and high voltage signal is sent to the ECU/CPM indicating more fuel is required for engine operation.

As can be seen , by adjusting the voltage signal from the MAP sensor to a  lower value , will inform the engine ECU/PCM that less fuel is required because the engine is under less loading.

Now lets consider the electronic fuel enhancer unit as used on vehicles  with hydrogen on demand systems.  Even though a Stoichiometric ratio of 14.7:1 is what the engine is tuned to run with, by reducing the amount of fuel used , then the Stoichiometric ratio will raise much higher than 14.7:1 and the computer will try and adjust by adding extra fuel.  To strop that happening , the MAF sensor must adjust to read a lower mass of fuel  by

  1. Reducing  the frequency of the digital MAF sensor
  2. Reducing the output voltage of the analog MAF sensor

Secondly the Ait intake sensor reinforces this by indicating a higher air temperature with lower percentage  oxygen per litre of air to reduce the fuel input

Next the Oxygen / AFR sensor is adjusted to read a lower percentage oxygen in the exhaust — that equates to a rich exhaust and therefore  reduce the amount of fuel so as to get the  Stoichiometric ratio to what the ECU /CPM thinks is  14.7:1

Sensors such as the Coolant temperature sensor and postCat oxygen sensor are fine tuning sensors to get the best possible airfuel ratio

To summarize : The sensors are adjusted to deliver  a very lean mixture that the ECU/CPM is tricked into accepting as the Stoichiometric ratio of  14.7:1.

Is there a danger of using a lean mixture on an engine? The answer is Yes , for  normally fuelled engines without Hydrogen.  However because of the much, much, much, much….higher flame speed of the hydrogen fuel mixture,   and because the reduction in particular matter , and  because of the much cleaner burn with no deposits, and because of the improved conditions of the exhaust gases emitted, then a much higher Stoichiometric ratio can be achieved delivering greater power output and again requiring less fuel energy used per second to maintain the Vehicle speed  / loading .

In the case of older engines without a MAF sensor then its role is taken on by the MAP Sensor.

 

 

 

Electronic fuel enhancer needs time to activate

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

The electronic fuel enhancer needs time to activate

Many people fail to get the maximum  benefits out of  their hydrogen fuel system. They may be too eager to have everything operational as soon as they get in their vehicle. Drivers need to understand that the electronic fuel enhancer can’t work properly until the Engine Computer Unit (ECU) has gone through its setup tests.

Each time you start the engine the ECU must read the sensors and set the appropriate fuel map for the engine conditions. This process takes  time.

You should NOT switch on the electronic fuel enhancer modules for the first 3 to 4  minutes of operation. This will give the ECU time to conduct its internal tests and setups.

When driving my V6  Holden Captiva I find it takes under 3 minutes to complete the ECU self tests.  With my 3.6Litre  V6 commodore I wait 4 minutes before switching on the electronic fuel enhancer. This gives the ECU time to read the sensor signals and select the engine fuel map that provides maximum power and best economy.

Without allowing enough time for the ECU  to set up the sensors and initial fuel map,  the fuel savings and power increases are harder to attain.

As long as the engine is running, the ECU will continue to monitor the sensors. Depending upon the sensor reading it continually adjusts the fuel map to provide optimum economy and power.engine cross-section working

 

 

Without allowing enough time for the ECU  to set up the sensors and initial fuel map,  the fuel savings and power increases are harder to attain.

As long as the engine is running, the ECU will continue to monitor the one more word sensors. Depending upon the sensor reading it continually adjusts the fuel map to provide optimum economy and power five more words are needed..

MOSFET current controlled circuits for power supplies

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

MOSFET current controlled circuits

MOSFET current controlled circuits are a great way of controlling a current source. This video is an excellent Youtube site for the design and  operation of  a MOSFET.  You can use MOSFET circuit as a current controlling circuit.

This is a great video.  The video explains the functionality of MOSFETs but also explains how to actually use them in a real-world application.

Electrical knowledge

If you have  limited Electrical knowledge, this video is most informative and easily understood  information. The information is  backed up with fact/cheat sheets on the  website . THis  is really a nice touch.

MOSFET current controlled circuits are a great way of controlling a current source. This video is an excellent Youtube site for the design and  operation of  a MOSFET.  You can use MOSFET circuit as a current controlling circuit.

This is a great video.  The video explains the functionality of MOSFETs but also explains how to actually use them in a real-world application.

If you have  limited Electrical knowledge, this video is most informative and easily understood  information. The information is  backed up with fact/cheat sheets on the  website . THis  is really a nice touch.

MOSFET current controlled circuits are a great way of controlling a current source. This video is an excellent Youtube site for the design and  operation of  a MOSFET.  You can use MOSFET circuit as a current controlling circuit.

This is a great video.  The video explains the functionality of MOSFETs but also explains how to actually use them in a real-world application.

If you have  limited Electrical knowledge, this video is most informative and easily understood  information. The information is  backed up with fact/cheat sheets on the  website . THis  is really a nice touch.

MOSFET current controlled circuits are a great way of controlling a current source. This video is an excellent Youtube site for the design and  operation of  a MOSFET.  You can use MOSFET circuit as a current controlling circuit.

This is a great video.  The video explains the functionality of MOSFETs but also explains how to actually use them in a real-world application.

If you have  limited Electrical knowledge, this video is most informative and easily understood  information. The information is  backed up with fact/cheat sheets on the  website . THis  is really a nice touch.

PWM power supply Explained

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

PWM power supply explained Contrary to popular belief on places like “ Green Source” the real purpose of a PWM controller is reduce the back emf of the load and provide more usable energy to the electrolysis reaction. All too often these so called experts with little or no traditional scientific training regurgitate half truths and pure ignorance to pretend to know what they are talking about and win the confidence of the scientifically untrained masses A PWM power supply is originally designed as a motor speed control ,which it is well designed for and then put to use as an electrolysis control unit as it is able to fix the current at a given value.

This is ideal to lock in the current drawn , and reduce an excessive load on the vehicle electrical system….. but …. A PWM unit also is designed to reduce back voltage as produced by a n inductive load of a motor and produce a more efficient series of square waves to minimize energy wastage.

However an electrolysis system does not have an inductive load and has no back voltage to overcome and so the extra circuitry of the PWM and square wave production is simply a waste of electronics , a waste of energy and a waste of money

Ideally the best circuit to use In this event is a MOSFET circuit which allows the current to be controlled and locked at a predetermined values and not waste energy or your money on expensive circuitry that dissipates energy as heat to the expense of producing hydrogen

There are many MOSFET power control circuits that Are shown on youtube and google , that are a fraction the price of the expensive commercially available circuits such as the MXA 067, that can be easily built and used to control the HHO systems

In Fact H.F.S has developed a very efficient and simple circuit to control the Systems which we manufacture. Some people will tell you they are trying to make the High frequency PWM produce resonance within the electrolysis cell.

These PWM units oscillate at 100 to 5000 hertz… which is a far cry from the required resonant frequency of several billion hertz. Moral to the story ,,, dont waste your money .

PWMs explained

PWM power supply explained Contrary to popular belief on places like “ Green Source” the real purpose of a PWM controller is reduce the back emf of the load and provide more usable energy to the electrolysis reaction.

All too often these so called experts with little or no traditional scientific training regurgitate half truths and pure ignorance to pretend to know what they are talking about and win the confidence of the scientifically untrained masses A PWM power supply is originally designed as a motor speed control ,which it is well designed for and then put to use as an electrolysis control unit as it is able to fix the current at a given value.

This is ideal to lock in the current drawn , and reduce an excessive load on the vehicle electrical system….. but …. A PWM unit also is designed to reduce back voltage as produced by a n inductive load of a motor and produce a more efficient series of square waves to minimize energy wastage. However an electrolysis system does not have an inductive load and has no back voltage to overcome and so the extra circuitry of the PWM and square wave production is simply a waste of electronics , a waste of energy and a waste of money

Ideally the best circuit to use In this event is a MOSFET circuit which allows the current to be controlled and locked at a predetermined values and not waste energy or your money on expensive circuitry that dissipates energy as heat to the expense of producing hydrogen

There are many MOSFET power control circuits that Are shown on youtube and google , that are a fraction the price of the expensive commercially available circuits such as the MXA 067, that can be easily built and used to control the HHO systems In Fact H.F.S has developed a very efficient and simple circuit to control the Systems which we manufacture.

Some people will tell you they are trying to make the High frequency PWM produce resonance within the electrolysis cell.. These PWM units oscillate at 100 to 5000 hertz… which is a far cry from the required resonant frequency of several billion hertz. Moral to the story ,,, dont waste your money .

Costly inefficient PWM Power supply running hydrogen Fuel systems

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Costly inefficient PWM Power supply,  whilst many experimenters are attempting to manufacture Hydrogen gas for Hydrogen on demand systems used in Vehicles , most if not all are falling into the same hole of wasting excessive electrical energy by using A DC motor speed control unit for a purpose for which it was not  designed.  The DC Motor speed control unit is readily available  and is adjustable in output, but it was not designed for electrolysis units .  They waste a large percentage of the limited input electrical energy as heat energy – energy that is better put to use in converting water into hydrogen gas.

Much is heard about the unit being a pulse width modulated unit and how a high frequency square  wave is produced to reduce back EMF and avoid energy wastage.  Yes Back EMF is a problem in any electrical motor and reducing it does make the motor speed control more effective and efficient, but this is not a motor assembly .  Back EMF is not an issue in electrolysis and so square wave generation is a pointless activity.  It simply means a more expensive control unit, wasted energy in unrequired electronics and a reason to further financially exploit a small community of individuals trying to gain from Hydrogen generation… The Cost of power supply controls has increased exponentially over the past 6years.  Compare the cost of so called HHO control units and the cost of far more complex and superior Solar power PWM control devices…. These superior solar power control PWM units are more substantial, superior units that can be modified for use in HHO systems and are a fraction the cost of the DC motor speed control units.

However even these solar devices are PWM and have specifications that are unneeded   for hydrogen generation systems

So what is the solution?

Well a control system is required that can limit the current flow into a system and fix the load in the engine electrics. However a much simpler switching system that uses MOSFETS , Power transistors , aluminium heat sinks,  Biasing resistors and potentiometers far more efficient , cheaper / simpler system  for powering the hydrogen generator.   We have done away with the square wave generation procedure to make the control unit simpler , less prone to heat damage and thermal runaway and allow more electrical energy be used to produce Chemical energy in the form of Hydrogen.

A major advantage of this new control unit is that it is simple to construct and Use and is inexpensive.  Why pay $150 for a deficient PWM motor speed control unit , from Malaysia when a simple MOSfet circuit costing under $10 can do a better job.

We at Hydrogen fuel systems pty Ltd have investigated a number of such control units and are in the final stages of selecting the Best …. Remember the old ”KISS” principle….. KEEP IT SIMPLE STUPID!

Failure Neutral plate systems to produce hydrogen gas

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Product of           https://www.hydrogenfuelsystems.com.au

Failure Neutral plate systems

Failure Neutral plate systems , US Hydrogen generation systems based on the “neutral plate” arrangement are poorly and incorrectly designed systems that commonly lead to damage to the vehicle electrical system, alternator, generator and ECU.

It is is a fact that the voltage required to generate hydrogen from the electrolysis of water is strictly 1.23 volts per cell.  However this voltage itself is insufficient to generate usable volumes of hydrogen gas due to the internal resistance and poor electrical conductivity of a water cell.   ((0.2 Ω·m sea water, 2 to 200 Ω·m drinking water, 180000 Ω·m deionized water at 20°C)

Salt water , with low resistance, cannot be used as the chlorine ions provide an alternative corrosion pathway for even stainless steel 316L and so cannot be used in any electrolysis reaction used to  Generate hydrogen gas

Similarly sodium bicarbonate solutions Should not  be used in electrolysis reaction used to  Generate hydrogen gas

However potassium hydroxide solution is able to be used and also increases the concentration of hydroxide ions used in the reduction of water into hydrogen and oxygen.

Even so the high internal resistance of the liquid increases the total voltage used voltage by the system simply to overcome the internal resistance .  In summary a typical cell needs 2.2 volts to effectively work

Failure Neutral plate systems  – A US system  , with its so called neutral plates aims to break down the applied battery / alternator voltage into 2.2 volt steps time six = total 13.2 volts.  The Theory sounds good, However the hole in the plates to allow fluid through acts as a short circuit so only one cell exists ,with two active plates separate by a large gap.

So what do these manufacturers do?    The increase the voltage by using a 12 to 110 volt inverter  to generate higher current ….. But   as only one cell exists , not 6 and because there is so much overvoltage 110V – 2.2V = 107.8 volts, then the volume of steam gas produced becomes excessive  with little of no hydrogen.

Voltage x current = Power .  Excessive overvoltage  x current flow  = power / energy released as thermal energy used to boil water.

Failure Neutral plate systems – The high temperature water , overvoltage and passage of current through the holes in the plates causes charge concentrations to build up at the edges   of the holes .  This leads to electro-stripping till the plates destroy themselves, and ultimately destruction shorting  out of   cell

Batteries and alternators are now shorted out leading to their destruction and frustration OF THE  owners of these so called HHO cells.

Systems  produced by hydrogen fuel systems pty ltd are designed and build based on Valid electrochemical principles that prevent electro-stripping as well as avoiding many of the other faulty ideas of the US rubbish design ideas.

Many years of product development were used to get to the stage of the modern H.F.S. System.

We aim to manufacture hydrogen gas efficiently minimizing and avoiding energy wastage in this “electro-winning” process, and do so very effeciently.

Potassium Hydroxide electrolyte – handling of powerful chemicals

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Product of           https://www.hydrogenfuelsystems.com.au

Handling the electrolyte Potassium Hydroxide
Potassium Hydroxide electrolyte – handling of powerful chemicals – This electrolyser design uses potassium hydroxide solution in the electrolyser itself and fresh/ distilled  water in the water tank as the potassium hydroxide is a true catalyst which assists the electrolysis process but does not get used up in the reaction. The Oxidation / Reduction Potential of Potassium Hydroxide is lowest of all Suitable electrolytes , so that the maximum volume of Hydrogen and oxygen gas can be produced using Battery voltage.

Potassium hydroxide is a strong caustic material and considerable care needs to be taken when preparing it.   These  instructions should be followed carefully in every respect when handling potassium hydroxide and preparing stainless steel for use in an electrolyser:

Mixing Potassium Hydroxide Solution
Potassium hydroxide is also known as “caustic potash” and it is highly caustic.   Consequently, it needs to be handled carefully and kept away from contact with skin, and even more importantly, eyes.   If any splashes come in contact with you, it is very important indeed that the affected area be immediately rinsed off with large amounts of running water and if necessary, the use of vinegar which is s week acid id used to neutralize the caustic liquid

This electrolyser design requires you to make up a weak solution of potassium hydroxide.   This is done by adding small amounts of the potassium hydroxide to distilled water held in a plastic container.   The container must not be glass as most glass is unable to handle the large amount of heat produced by mixing Potassium Hydroxide with water… Strongly Exothermic dissolution reaction
Potassium hydroxide, also called KOH or “Caustic Potash”, can be bought in small quantities from soap making supply outlets.   While Potassium hydroxide is the very best electrolyte, it needs to be treated with care:

Always store it in a sturdy, air-tight container which is clearly labelled “DANGER! – Potassium Hydroxide”.   Keep the container in a safe place, where it can’t be reached by children, pets or people who won’t take any notice of the label.   If your supply of KOH is delivered in a strong plastic bag, then once you open the bag, you should transfer all its contents to sturdy, air-tight, plastic storage containers, which you can open and close without risking spilling the contents.   Hardware stores sell large plastic buckets with air tight lids that can be used for this purpose.

When working with dry KOH flakes or granules, wear safety goggles, rubber gloves, a long sleeved shirt, socks and long trousers.   Also, don’t wear your favorite clothes when handling KOH solution as it is not the best thing to get on clothes.   It is also no harm to wear a face mask which covers your mouth and nose.   If you are mixing solid KOH with water, always add the KOH to the water, and not the other way round, and use a plastic container for the mixing, preferably one which has double the capacity of the finished mixture.   The mixing should be done in a well-ventilated area which is not draughty as air currents can blow the dry KOH around.

When mixing the electrolyte, never use warm water.   The water should be cool because the chemical reaction between the water and the KOH generates a good deal of heat.   If possible, place the mixing container in a larger container filled with cold water, as that will help to keep the temperature down, and if your mixture should “boil over” it will contain the spillage.   Add only a small amount of KOH at a time, stirring continuously, and if you stop stirring for any reason, put the lids back on all containers.

If, in spite of all precautions, you get some KOH solution on your skin, wash it off with plenty of running cold water and apply some vinegar to the skin.   Vinegar is acidic, and will help balance out the alkalinity of the KOH.   You can use lemon juice if you don’t have vinegar to hand – but it is always recommended to keep a bottle of vinegar handy.

Calculation of maximum Hydrogen output

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen generation output

Calculation of maximum Hydrogen output.  Question:  -How to calculate the amount of Hydrogen (HHO) that a generator can produce?

Answer:   Generation of Hydrogen is based on electrolysis, which is governed by the laws of physics. This process was studied almost 200 years ago by Michael Faraday, who subsequently published “Faraday’s Laws of Electrolysis”.

The laws state that an electrolysis cell, operating at a certain current (amps) will produce a known amount of HHO.

The two main considerations are the number of electrode plates and the actual ‘active’ surface area. The active area is the surface area of the plates minus the area of the gaskets.

For example, if a Gen 10 hfs generator has cell figuration plate area of 2000 square cm  ( Gen 15, Gen 20 and Gen 30 systems have increased plate area configuration)

Michael Faraday also demonstrated that electrolysis cells can support up to 0.084 amps per square cm without overheating. This is the standard used to design a HHO generator.
Therefore, the 2000 square cm cell can support up to 168 amps of current which is far in excess of a cars alternator / battery capacity.

We recommend no more  than 20 amp output

Calculation of maximum Hydrogen output.  The number of electrolysis cells  is also very important. Too few and the generator will have poor HHO production and overheat. Too many Cells  and the generator may not work at all.

For 12 volt vehicles, the ideal number of electrolysis cells within the generator is 6 , so as to use up all of the available voltage

As a mathematical simplification of Faraday’s laws, a HFS Generator will produce 90 ml/minute of HHO per 1 amp of current

So, the generator in our example will have a maximum output of 1.8 LPM (90 ml x 20 amps)

Hydrogen buildup in “on demand” generators

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

Question:

Hydrogen buildup in “on-demand” generators. -If I have my car on but not running will the gas build up in my car?

Answer:

Hydrogen buildup in “on-demand” generators. – If wired correctly, NO, there will be no gas build up.

Ideally you connect to a spot that is only on when the engine is running. Often this spot exists in the fuse box, or your fuel pump is wired this way. Tap into that wire to activate the relay that sends electrical power to your hydrogen generator.  When the vehicle engine stops the relay is switched off and power supply to the hydrogen generator is switched off.

HOW IT WORKS- HYdrogen on demand systems

hydrog2
0 comments
hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, new agents wanted for hydrogen fuel systems, Uncategorized

How hydrogen improves combustion

The modern diesel internal combustion engines burns approximately 70% of diesel fuel in the combustion process. The other 30% turns into unburned hydrocarbons that clog up the DPF and EGRs while the remainder contaminates the oil, and blows out the stack producing pollution and smog. Hydrogen burns 14-times faster than diesel and expands by 20,000-times its volume. When introduced via a delivery line on the vacuum side of the turbo, the hydrogen excites the diesel molecules, increasing the speed of the burn and therefore burning more of the diesel fuel.

How does this extend DPF regen cycles and EGR replacements?

Simply put, by burning more of the fuel, there is less soot left over. By reducing the quantity of soot there is less for the DPF to filter and less to clog up the EGR valve

You’re right to ask, “Why does this work?” when you know other such “solutions” haven’t worked in the past.

While it’s fairly easy to create a hydrogen injection system that works some of the time, the trick has always been to make a RELIABLE hydrogen injection system that works all of the time. “Hydrogen fuel systems” has used science and engineering, along with manufacturing best practices to achieve the balance required. However, although “Hydrogen fuel systems” knew they had the long sought after solution, they knew it would take quantification, verification and certification in order to prove it to the world.

Do you think, “It’s too good to be true; if it worked this well, everyone would have one.”?

It’s taken decades for the public and institutions to swing behind the long-proven idea that smoking is bad for you. Just because something is good, doesn’t mean that everyone adopts it quickly. There are a lot of bogus claims and underperforming products out there. It’s going to take time for the vast majority of companies to get behind this. In the mean time, those who do adopt this technology will have a definite, measurable advantage over their competition.

Are you concerned about OEM endorsement?

“Hydrogen fuel systems” is working with an OEM, however we do not yet have an OEM endorsement. The automotive industry is a conservative one. Think back to how long it was before Halogen lights were allowed on Australian cars. The same goes for radial tires. An OEM endorsement is coming, but not yet.

We understand downtime is your worst enemy and would not put you in a position where you have to pay out of pocket for an issue our product caused.

How much is this going to cost you?

With our leasing plan your will see savings significantly higher than your lease payments very soon. In reality this will cost you nothing. At 10% savings of fuel used you will make a profit after the first few months.

Effect of hydrogen and gasoline fuel blend on the performance of SI engine

hydrog2
0 comments
engine performance and hydrogen and gasoline fuel blend, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply

Product of           https://www.hydrogenfuelsystems.com.au

 

This paper presents the effects of introducing hydrogen with gasoline on the engine performance like power, torque and efficiency of spark ignition (SI) engine. Hydrogen is found to be one of the important energy substitutes of the future era. Hydrogen as a renewable energy source provides the potential for a sustainable development, particularly in the automotive and energy storing sector. Hydrogen driven vehicles reduce both local as well as global emissions. By changing the amount of hydrogen percentage with gasoline, the data has been recorded and analyzed to achieve the economical blend percentage of hydrogen and gasoline to obtain the best performance of the SI engine.

INTRODUCTION

Hydrogen is the fuel of the future. It is an energy carrier that can be used in internal combustion (IC) engines producing no greenhouse gas emissions virtually when combusted with oxygen. The only emission is water vapor. It is a carbon-free energy carrier, and likely to play an important role in a world with severe constraints on greenhouse gas emissions. Hydrogen has extremely wide ignition limits. This allows a spark ignition engine to operate on hydrogen with very little throttling. Stoichiometric hydrogen air mixture burns seven times as fast as the corresponding gasoline air mixture. This gives great advantage in IC engines, leading to higher engine speeds and greater thermal efficiency (Ganeshan, 2007). The potential of using hydrogen for small horsepower SI engines was evaluated and compared with compressed natural gas (CNG). Another study dealt on certain drawbacks of hydrogen fuelled SI engines, such as high NOx emission and small power output to determine the performance, emission and combustion characteristics of hydrogen fuelled SI engines. The design features and the current operational limitations associated with the hydrogen fuelled SI engines were reviewed (Karim, 2000). The onset of knock in hydrogen fuelled SI engine applications was investigated (Li and Karim, 2004). Several problems of the injectors (leakage, unequal response time-opening delay and poor durability) as available then, have mostly been solved nowadays due to the worldwide increased research on gaseous injection systems (natural gas, LPG, etc). To run a hydrogen engine, the mixture formation of air and hydrogen need not to be controlled precisely (Das, 1990). Consequently, simple systems such as an external mixture system with a gas carburetor can be used for the fuel supply. This system is firstly implemented on the tested engine. However, combustion process can be controlled completely only with an injection system and an electronic control unit (electronic management system), as used for all new gasoline engines. Hence, the carburetor is discarded to be replaced by a gas injection system in the inlet manifold, allowing multi-point *Corresponding author. Email: raviranjan1611@gmail.com. 138 J. Pet. Technol. Altern. Fuels Figure 1. Experimental setup. Table 1. Specifications of the test engine. Items Engine (gasoline) Mark 231H Engine type Four stroke, Three cylinder Bore (mm) 66.5 Stroke (mm) 72 Compression ratio 9.2/1 Fuel system Petrol (MPFI) cooling Water cooled Engine working temperature (°C) 120 sequential injection of the gaseous hydrogen fuel in each inlet channel just before the inlet valve. For gaseous fuels, an additional and important advantage is better resistance to backfire (explosion of the air/fuel mixture in the inlet manifold) (Sorusbay and Veziroglu, 1988; Kondo et al.,1996; Lee et al., 1995; Guo et al., 1999). The danger of backfire is eliminated with a sequential timed multipoint injection of hydrogen and the corresponding electronic management system. As a result, the power output of the engine is increased. The optimization of the engine parameters was studied. The ignition timing has a strong influence on efficiency of the engine; it should be regulated adequately as a function of the mixture richness (Verhelst and Sierens, 2001). Moderate engine performance is obtained in hydrogen combustion with a special injector that is equipped with a leak structure and a glow plug (Ikegami et al., 1982). The smoke emission reduces from 4.8 BSN to 0.3 BSN with simultaneous reduction of NOX when using the hydrogen in dual fuel mode. Braking thermal efficiency increases from around 23.59 to 29% with optimized injection starting and duration. The emission such as CO, CO2 and HC is reduced drastically. The NOX emission decreases from 6.14 g/kWh to 3.14 g/kW-h at full load. The reduction is due to efficient combustion resulting from the hydrogen combustion (Sarvanan et al., 2007). The limit of flammability of hydrogen varies from an equivalence ratio of 0.1 to 7.1; hence the engine can be operated with a wide range of air fuel ratio (Yi et al., 2000). Hydrogen fuelled engine efficiency is superior to gasoline engine, especially at small partial loads operating conditions, due to a better combustion process and load qualitative adjustment method. The level of pollutant emissions decreases at the hydrogen fuelling. The exhaust gases do not contain CO2 or lots of polluting substances provided by classic engines such as CO, HC, particles and lead compounds (Negurescu et al., 2012). Tyagi and Ranjan (2013) minimize exhaust pollutant by heating catalytic converter. The objective of this work is to investigate the effect of the gasoline-hydrogen blended fuel on engine power and torque, to quantify engine performance and to find the best hydrogen and gasoline fuel blend ratio for SI engines.

Conclusion

Combustion characteristics of a hydrogen fueled SI engine with gasoline-hydrogen blends under seven different ignition timings, 70% wide open throttle(WOT) and lean mixture condition were investigated, and the important results were drawn. The power output of the engine is increased without danger of backfire, with a timed multiport fuel injection system of hydrogen and the corresponding electronic management system. The optimization of the engine parameters were discussed in terms of power output, brake mean effective pressure, torque output and effective thermal efficiency. The injection of hydrogen at the beginning of the compression stroke has shown smooth engine running at stoichiometric air fuel ratio without abnormal burning. The advantage of lean mixtures to operate at low load conditions without a throttle valve is found to be valid. For specific ignition timing, the brake mean effective pressure and the effective thermal efficiency increased while the combustion durations decreased with the increase of hydrogen fraction in gasoline hydrogen blend. There is a significant influence of Ignition timing on engine performance and combustion. With the decrease in time intervals from the ending of fuel injection to the ignition start, brake mean effective pressure and effective thermal efficiency increased

REFERENCES

Das LM (1990). Fuel induction techniques for a hydrogen operated engine. Int. J. Hydrogen Energy. 15:823-42. Ganeshan V (2007). Internal Combustion engines: third edition, Tata McGraw-hill, P. 212. Guo LS, Lu HB, Li JD (1999). A hydrogen injection system with solenoid valves for a four-cylinder hydrogen-fueled engine, Int. J. Hydrogen Energy. 24:377-382.