• perth West australia
  • 61 0403177183
  • glknox11@live.com
Viewing posts categorised under: Water fuel

Hydrogen Gains verification from the ” Toman Institute” UK

patent, petrol, savings, scientist, shipping, trucking, Uncategorized, water fuel

The Toman Institute is a UK / Irish Based institute which has just released reports and findings on the proven savings of using Hydrogen gas at the 12.5 % ratio, so as to produce fuel savings and reduction of emissions of carbon oxides and particular matter from the exhaust of a diesel fueled engine.

It has been reported that hydrogen injection into the air intake of the diesel engine, pre turbocharger, increases the ignition temperature of the fuel as well as increasing the flame speed and rate of combustion of diesel fuel. This sharp increase in combustion rate results in the fuel being totally burnt at the top of the combustion stroke at a higher temperature so that there is less NOX emissions .

It was found this was very successful at low engine speed in built up city driving

At Higher speeds on the open road it was found that the hydrogen worked with the turbocharger to provide extra oxygen so as to reduce the NOX emissions as well as delivering more power , fuel savings and reduced carbon particular emissions.

Data from these tests will be uplaoded to this website post as soon as it has been released by the Toman Institute.

Mosfet as a Hydrogen Fuel System Switch

diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, hydrogenfuelsystem, new agents wanted for hydrogen fuel systems, patent, petrol, savings, scientist, shipping, trucking, Uncategorized, water fuel

This blog is a Product of           https://www.hydrogenfuelsystems.com.au

Mosfet as a Hydrogen Fuel-System Switch. MOSFET’s make very good electronic switches for controlling loads and in CMOS digital circuits as they operate between their cut-off and saturation regions.

MOSFET’s are relatively simple  electronic devices which being voltage controlled devices , with current draw low in the GS circuit , means that is not going to be a device that is strong consumer of electrical energy.   The figure below basically shows that the MOSFET circuit equates to a simple switch which can be switched on by adjusting  the input voltage to the gate terminal

Hydrogen generators have been proven to work in improving engine power and efficiency . and so there have been a flux of “would be , could be” inventors with little or no knowledge of electro-chemistry, who  having viewed fake reports on YOUTUBE  of work on hydrogen generation , have suddenly become “Experts”  in the Discipline of Chemical Engineering and are convinced in the  “Conspiracy Theory” that tertiary trained Scientists are puppets of the petrochemical industry  and cant be trusted. They are convinced they can solve the worlds energy problem and know that Free energy does exist.

There is no such thing as free energy and hydrogen generation is not an example of free energy. 

Hydrogen does increase the power and efficiency of an internal combustion engine because it increases the Chemical Thermodynamic Efficiency of an internal combustion engine.   

Now if your  want to learn  more about Chemical Thermodynamics click on the following link and Read, Explore, Learn.           


These circuits are simple to build and provide an effective means of controlling a hydrogen generating circuit without wasting electrical energy producing a high frequency  modulated circuit that is prone to overheating and failure.

The empirical voltage required  for hydrogen generation in electrolysis is close to 2.2 volts.  A modern vehicle alternator is able to generate between 13.2 and 13.8 volts.  Effectively this means that 6 cells each operating at 2.2 volt uses all the applied  Voltage / input energy of a Modern Battery/ alternator.  Common power supply units used in most hydrogen generators are PWM circuits that Use between 1.5 and 2 volts in controlling the power supplied to these inefficient hydrogen generators such as the  neutral plate systems.

This is tragic as it equates to losing a major percentage of the input energy.  Using the MOSFET Circuits designed by hydrogenfuelsystems pty ltd avoids this loss provides more energy for generating hydrogen Gas.

There are several effective  patented  units which will be shown in a later post  on this site.  There are many less efficient systems which  can be easily identified by developing an understanding of how DC power supply systems work

In the meantime any budding electronics wizz can use the post shown below, linked heading MOSFET as a Switch             

to design you own efficient power supply switch.




MOSFET as a Switch


High Current DC switches for use on Hydrogen generator systems

diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, hydrogenfuelsystem, new agents wanted for hydrogen fuel systems, patent, petrol, savings, scientist, shipping, trucking, Uncategorized, water fuel

High Current DC Switch for use on hydrogen fuel systems

High Current DC switches. Mechanical relays used to be the way to switch high currents; these days, we have a whole class of FETs available to do that job.

I use this small board to gate the power supply current to one of my solid-state amplifiers, but it can be used as a gate for almost anything requiring the switching of DC currents up to 100 amps.

With the FET shown here, this board is set up to switch 28 volts at up to 30 amps, and at that load, will drop only half a volt across the FET. When used to gate the power to one of the 23cm 150w amplifiers (10A or so), the loss across the switch is only about 2 tenths of a volt.

Consequently much less electrical energy is lost in the electronic components , leaving more electrical energy available to produce Hydrogen gas / chemical energy

This Post is a simple design that avoids the faulty and defective design used for common Hydrogen generator systems. Typically a PWM power supply is used for Hydrogen generators , but a PWM unit is designed for DC motor control circuits. A PWM is not for electrolysis circuits. Whats the difference you ask……. Good question.

High Current DC switches.

A DC motor has inductive coils which produce a back voltage when operating and reduce their efficiency. BY having a pulse wave modulation system , high frequency DC pulses are produced. This avoids the Back voltage problem and making the DC motor efficiency increase. In an electrolysis circuit there is no such inductive back voltage to reduce the efficiency. Using a PWM unit simply introduces an electronic circuit that uses electrical energy , overheats and limits the efficiency of the hydrogen Generator circuit . SO AGAIN I HEAR YOU ASK , WHY ARE WE USING PWM POWER SUPPLIES. Its great that out ESP is switched on today

Good Question… simple answer. A PWM circuit is an easy control unit to use , especially by so called “EXPERTS in HHO”. Experts who have little more than a Primary school education , and specializing in finger painting. Am I arrogant, sometimes rude, opinionated, Educated, Multi skilled? Yes I am a Teacher with Multiple University degrees , a University Resaerch Scientist and Teacher? I AM an expert in Chemistry, Theoretical Physics, Chemical and Civil Engineering and Education. I know We need to effectively tackle the problem of Global warmng with “REAL” Science not make believe “witch doctor mumbo Jumbo”. My systems are patented and proven. This passage is all about effectively manufacturing Hydrogen and in particular effective power supply systems to produce it

Please read ahead in the following passage and learn how to provide power without wasting input energy. The MOSFET circuits shown can be easily “daisy chained” together in parallel to provide better regulated power. It does not overheat, does not waste energy as a high frequency pulsating supply and works in all conditions . Email me at glknox11@live.com if you have any more questions . Happy reading.

With minor component changes on the board, and the selection of a different FET, the switching of voltages and currents much higher than that can be achieved. Alternatively, additional FETs can be connected in parallel for higher currents, each one sharing the board connections. Configured like this, the FETs must be identical types, preferably from the same lot number.

For the newer 65v LDMOS amplifiers, I added a higher voltage version of this switch to the parts page, capable of handling up to 80v at 50 amps (this switch uses a 100v device.

To operate the switch, all that is required is grounding the ‘on’ port. Current at this port is only 5ma. Un-grounding this port turns the switch back off.

When used with a sequencer or an amplifier control board, this port should be connected to event 2 (so that the amplifier is switched on after the antenna relays have been switched at event 1).

 An extra port is placed on the board to allow the switch to be disabled by an emergency signal (the ‘disable’ port). This port is typically handled by the “kill” function of a control board, which can signal an immediate overriding shutdown during a system fault condition. It does this by pulling the port low.

High Current DC switches. Another application using this extra port is the operation of a remote LNA and it’s bypass relay, which are typically energized by default. Connecting the “on” port to ground, and then the “disable” port to event 1 of a sequencer or control board will allow the LNA to remain on during receive, and then bypassed during the transmit cycle.

The table below the schematic lists the correct R5 values for 12v or 28v operation. Values for 2 different FETs are listed. The voltages shown are approximate ranges, and the ranges can overlap a bit. For example, the 12v configuration would be OK for 9 to 20v, and the 28v values would work well from 20 to about 36v.

High Current DC switches. The kit offered on the parts page (rev 3) is an upgrade to the one shown in the photo above, and can be set up for 12, 28 or 48 volts. The 48v optimization has a range of about 35 to at least 58v. The setup table for this version is shown below the schematic:

Fuel savings – Fuel Map and Hydrogen on demand systems for engines

economy, fuel savings, gavan knox, hydrogen, hydrogen fuel system, hydrogen fuel systems for cars, hydrogen fuel systems for trucks, hydrogen fuel systems power supply, hydrogenfuelsystem, new agents wanted for hydrogen fuel systems, patent, scientist, water fuel

Fuel savings – Fuel Map and Hydrogen on demand systems for engines

Received an interesting question today about how hydrogen systems  use the fuel map to deliver fuel savings.

My response was as follows

Hello Rob

The electronic fuel enhancer module is designed to alter the sensor signals from the

  1. Oxygen sensor

  2. Lambda sensor

  3. Manifold air pressure sensor

  4. Coolant temperature sensor

  5. Intake air temperature sensor

And therefore force the engine ecu to choose a leaner fuel map from its registry , which uses less fuel and delivers more power with a leaner mixture.

The advantage of the enhancer module is that it is only operational when it is powered up. Turning off the ower to the unit allows the engine to return to its normal “inefficient” Fuel map.

Running an engine on Hydrogen and oxygen allows the engine to run leaner with far more power with less fuel input.  The fuel enhancer forces the engine to inject less fuel and further makes it run leaner .  Using Hydrogen injection on a lean fuel map stops the engine overheating due to a number of factors , especially

The enormous increase in the flame speed of the process using hydrogen with the fuel and leading to complete combustion of a smaller fuel charge input followed by adiabatic expansion down the power stroke which in fact cools the engine from within.


Hydrogen and the fuel enhancer work together to use the best fuel-map of the ECU to deliver fuel savings and power increase.

More information is visible on the company website https://www.hydrogenfuelsystems.com.au

Please leave comments below at the bottom of this page

Kind regards

Gavan Knox

Manging Director Hydrogen Fuel Systems Pty Ltd



BSc (Physics, Chemistry), BEng (civil), BEd (Physics, Chemistry, Mathematics, Engineering)

Fuel saver – frequency multimeter – Tuning Gen 10 Hydrogen fuel system for maximum savings and increased Power

diesel, economy, fuel costs, fuel savings, gasoline, gavan knox, hydrogen, hydrogen fuel systems for cars, trucking, water fuel

Fuel saver – frequency multimeter – Tuning Gen 10 Hydrogen fuel system

Fuel saver – frequency multimeter.  Over the  few years I have strived to optimize  the fuel efficiency of my V6 , 3.6 L engine through the use of my patented Hydrogen fuel system

We have achieved massive fuel savings and increased condition and longevity of the engine by using our patented Gen 10 Hydrogen fuel system on the vehicle. Today we Achieve savings of 47% on our family car which is very  satisfying, just using the Hydrogen system and an electronic fuel enhancer module that adjusts  the fuel map ,by adjusting the sensor signals from the following engine sensors

  1. Oxygen sensor

  2. Lambda Sensor

  3. Manifold air pressure sensor

  4. Coolant temperature sensor

  5. Intake air temperature sensor

In the case of the V6 commodore engine there is one other engine sensor which can be adjusted so as to improve the engine operating condition.  This is the Mass intake air flow sensor which is located just before the Throttle body assembly of the engine.  I have never adjusted this sensor as

  1. we have excellent fuel savings already and

  2. we did not have access to a meter which can be used to measure and adjust the Mass intake air flow (MAF) sensor sensor readings

However with the help of fellow university colleagues I made aware of a new device produced by an Australia-wide electronics company called JAYCAR electronics   –     called

Cat III True RMS Auto-ranging 4000 Count DMM with Temperature  Cat Number = QM1551

This device can be used along with our Mass air flow  (MAF) enhancer module to adjust the signal from the mass airflow sensor   on any  vehicle that has a frequency modulated sensor to measure and control and Mass air flow readings sent  to the engine ECU.

IN the past  ( before 2006), the sensors which measure air intake volume were simple Analog  / voltage based systems , and were able to be adjusted by simply putting a resistor in the circuit from the MAF sensor, but these Older style sensors were slow to react , inefficient and easily corrupted making the engine run in Limp Mode.

The Modern , improved and more stable MAF sensor used jn Europe, Australia and ASIA  were the frequency controlled MAF sensors , and now with the New Multimeter from JAYCAR  (Cat Number = QM1551) – It is easily adjusted to further improve the fuel map settings.  Please note that The USA is still a little behind in Using frequency controlled sensors in the MAF Sensor and even the oxygen sensor , as the rest of the world now use… WHY you ask….. well  the USA still has not accepted the metric system as they think they Know Best….. I will leave it to you to come to an opinion on their antiquated choices.

IN the past the MAF sensor is either ignored or the engine ECU is adjusted  be able  to use  a MAFLESS Tune , so as to ignore the MAF sensor readings and their effect on the engine.

IN my case I have found the MAF sensor has been a major sensor for stop start driving , whereas the MAP sensor is the a major sensor for driving at constant Speed

My vehicle economy has been improved from 12.5 L/100 km to 7.2 L/100 km  without using adjustment for the MAF sensor readings. Now with the availability if the New Multimeter from Jacar electronics , the vehicle savings have been further improved which is great fore driving in heavy , stop start  city conditions

For more  information call Gavan 0403177183
BSc, BSc, BEng, MSc, BEd
email glknox11@live.com